Displaying publications 121 - 140 of 230 in total

Abstract:
Sort:
  1. Ng CA, Sun D, Bashir MJ, Wai SH, Wong LY, Nisar H, et al.
    Bioresour Technol, 2013 Jun;138:38-47.
    PMID: 23612160 DOI: 10.1016/j.biortech.2013.03.129
    It was found that with replenishment, powdered activated carbon (PAC) in the membrane bioreactor (MBR) would develop biologically activated carbon (BAC) which could enhance filtration performance of a conventional MBR. This paper addresses two issues (i) effect of PAC size on MBR (BAC) performance; and (ii) effect of sludge retention time (SRT) on the MBR performance with and without PAC. To interpret the trends, particle/floc size, concentration of mixed liquor suspended solid (MLSS), total organic carbon (TOC), short-term filtration properties and transmembrane pressure (TMP) versus time are measured. The results showed improved fouling control with fine, rather than coarse, PAC provided the flux did not exceed the deposition flux for the fine PAC. Without PAC, the longer SRT operation gave lower fouling at modest fluxes. With PAC addition, the shorter SRT gave better fouling control, possibly due to greater replenishment of the fresh PAC.
    Matched MeSH terms: Powders
  2. Zarina O, Radzali O
    Med J Malaysia, 2004 May;59 Suppl B:160-1.
    PMID: 15468867
    Hydroxyapatite powder was mechanochemically synthesized from calcium pyrophosphate (Ca2P2O7) and calcium carbonate (CaCO3) using a solid-state reaction. The two powders were mixed in distilled water, milled for 8 hours, dried and calcined at 1100 degrees C for 1 hour. The phase(s) formed was analyzed by x-ray diffraction (XRD). It was found that hydroxyapatite was not the only one formed. This result will be used as the starting point to produce a single-phase hydroxyapatite in terms of excess hydroxyl group in a mechanochemical reaction.
    Matched MeSH terms: Powders
  3. Mohd Nawi N, Muhamad II, Mohd Marsin A
    Food Sci Nutr, 2015 Mar;3(2):91-9.
    PMID: 25838887 DOI: 10.1002/fsn3.132
    This study focuses on the impact of different wall materials on the physicochemical properties of microwave-assisted encapsulated anthocyanins from Ipomoea batatas. Using the powder characterization technique, purple sweet potato anthocyanin (PSPAs) powders were analysed for moisture content, water activity, dissolution time, hygroscopicity, color and morphology. PSPAs were produced using different wall materials: maltodextrin (MD), gum arabic (GA) and a combination of gum arabic and maltodextrin (GA + MD) at a 1:1 ratio. Each of the wall materials was homogenized to the core material at a core/wall material ratio of 5 and were microencapsulated by microwave-assisted drying at 1100 W. Results indicated that encapsulated powder with the GA and MD combination presented better quality of powder with the lowest value of moisture content and water activity. With respect to morphology, the microcapsule encapsulated with GA + MD showed several dents in coating surrounding its core material, whereas other encapsulated powders showed small or slight dents entrapped onto the bioactive compound. Colorimetric analysis showed changes in values of L, a*, b*, hue and chroma in the reconstituted powder compared to the initial powder.
    Matched MeSH terms: Powders
  4. Ahmad MS, Suardi N, Shukri A, Nik Ab Razak NNA, Oglat AA, Makhamrah O, et al.
    Eur J Radiol Open, 2020;7:100257.
    PMID: 32944594 DOI: 10.1016/j.ejro.2020.100257
    Introduction: Hepatocellular carcinoma (HCC) is one of the most common cancer in the world, and the effectiveness of its treatment lies in its detection in its early stages. The aim of this study is to mimic HCC dynamically through a liver phantom and apply it in multimodality medical imaging techniques including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound.

    Methods and materials: The phantom is fabricated with two main parts, liver parenchyma and HCC inserts. The liver parenchyma was fabricated by adding 2.5 wt% of agarose powder combined with 2.6 wt% of wax powder while the basic material for the HCC samples was made from polyurethane solution combined with 5 wt% glycerol. Three HCC samples were inserted into the parenchyma by using three cylinders implanted inside the liver parenchyma. An automatic injector is attached to the input side of the cylinders and a suction device connected to the output side of the cylinders. After the phantom was prepared, the contrast materials were injected into the phantom and imaged using MRI, CT, and ultrasound.

    Results: Both HCC samples and liver parenchyma were clearly distinguished using the three imaging modalities: MRI, CT, and ultrasound. Doppler ultrasound was also applied through the HCC samples and the flow pattern was observed through the samples.

    Conclusion: A multimodal dynamic liver phantom, with HCC tumor models have been fabricated. This phantom helps to improve and develop different methods for detecting HCC in its early stages.

    Matched MeSH terms: Powders
  5. Saran R, Upadhya NP, Ginjupalli K, Amalan A, Rao B, Kumar S
    Int J Dent, 2020;2020:8896225.
    PMID: 33061975 DOI: 10.1155/2020/8896225
    Introduction: Glass ionomer cements (GICs) are commonly used for cementation of indirect restorations. However, one of their main drawbacks is their inferior mechanical properties.

    Aim: Compositional modification of conventional glass ionomer luting cements by incorporating two types of all-ceramic powders in varying concentrations and evaluation of their film thickness, setting time, and strength. Material & Methods. Experimental GICs were prepared by adding different concentrations of two all-ceramic powders (5%, 10, and 15% by weight) to the powder of the glass ionomer luting cements, and their setting time, film thickness, and compressive strength were determined. The Differential Scanning Calorimetry analysis was done to evaluate the kinetics of the setting reaction of the samples. The average particle size of the all-ceramic and glass ionomer powders was determined with the help of a particle size analyzer.

    Results: A significant increase in strength was observed in experimental GICs containing 10% all-ceramic powders. The experimental GICs with 5% all-ceramic powders showed no improvement in strength, whereas those containing 15% all-ceramic powders exhibited a marked decrease in strength. Setting time of all experimental GICs progressively increased with increasing concentration of all-ceramic powders. Film thickness of all experimental GICs was much higher than the recommended value for clinical application.

    Conclusion: 10% concentration of the two all-ceramic powders can be regarded as the optimal concentration for enhancing the glass ionomer luting cements' strength. There was a significant increase in the setting time at this concentration, but it was within the limit specified by ISO 9917-1:2007 specifications for powder/liquid acid-base dental cements. Reducing the particle size of the all-ceramic powders may help in decreasing the film thickness, which is an essential parameter for the clinical performance of any luting cement.

    Matched MeSH terms: Powders
  6. Najjar-Tabrizi R, Javadi A, Sharifan A, Chew KW, Lay CH, Show PL, et al.
    Biotechnol Rep (Amst), 2020 Sep;27:e00507.
    PMID: 32775231 DOI: 10.1016/j.btre.2020.e00507
    Saponin was extracted from Acanthophyllum glandulosum root under subcritical water conditions, and effects of root powder and pH of the solution were evaluated on the concentration of the saponin as manifested in its foamability and antioxidant activity using RSM. FT-IR analysis indicated that A. glandulosum root extract had 2 main functional groups (hydroxyl and amide I groups). Saponin with the highest foam height (4.66 cm), concentration (0.080 ppm) and antioxidant activity (90.6 %) was extracted using 10 g of the root powder and pH value of 4. Non-significant differences were observed between the predicted and experimental values of the extraction response variables. The study demonstrated good appropriateness of resulted models by Response Surface Methodology. Furthermore, higher values of R2 was attained for the foamability (>0.81) and antioxidant activity (>0.97), as well as large p-values (p > 0.05) indication of their lack-of-fit response verified the acceptable fitness of the provided models. The extracted saponin also showed bactericidal effect, which shows potential as a natural antibacterial compound.
    Matched MeSH terms: Powders
  7. Bakhori SKM, Mahmud S, Mohamad D, Masudi SM, Seeni A
    Mater Sci Eng C Mater Biol Appl, 2019 Jul;100:645-654.
    PMID: 30948101 DOI: 10.1016/j.msec.2019.03.034
    Zinc oxide eugenol (ZOE) cements are generally made up of 80%-90% ZnO powder while the remaining content consists of eugenol bonding resin. ZnO structure plays a major role in the morphology and mechanical properties of ZOE. In this study, we investigated the effects of different particle sizes/shapes of ZnO particles on the surface and mechanical properties of ZOE. Three samples were prepared namely ZnO-Ax, ZnO-B and ZnO-K. The crystallite sizes calculated from XRD were 37.76 nm (ZnO-Ax), 39.46 nm (ZnO-B) and 42.20 nm (ZnO-K) while the average particle sizes obtained by DLS were 21.11nm (ZnO-Ax), 56.73 nm (ZnO-B) and 2012 nm (ZnO-K). Results revealed that the compressive strengths of ZOE-Ax and ZOE-B were improved by 87.92% and 57.16%, respectively, relative to that of commercial ZOE-K. Vickers hardness test demonstrated that the hardness of ZOE-Ax and ZOE-B also increased by 74.9% and 31.1%, respectively. The ZnO-Ax nanostructure possessed a small average particle size (21.11 nm), a homogeneous size distribution (DLS) and an oxygen-rich surface (from EDS and elemental mapping). Meanwhile, ZnO-B exhibited a slightly larger average particle size of 56.73 nm compared with that of other samples. Sample ZnO-Ax demonstrated the highest compressive strength which was attributed to its large particle surface area (21.11 nm particle size) that provided a large contact area and greater interfacial (or interlock) bonding capability if compared to that of ZnO-K sample (2012 nm particle size).
    Matched MeSH terms: Powders
  8. Tarmizi AAA, Wagiran A, Mohd Salleh F, Chua LS, Abdullah FI, Hasham R, et al.
    Plants (Basel), 2021 Apr 07;10(4).
    PMID: 33917172 DOI: 10.3390/plants10040717
    Labisia pumila is a precious herb in Southeast Asia that is traditionally used as a health supplement and has been extensively commercialized due to its claimed therapeutic properties in boosting a healthy female reproductive system. Indigenous people used these plants by boiling the leaves; however, in recent years it has been marketed as powdered or capsuled products. Accordingly, accuracy in determination of the authenticity of these modern herbal products has faced great challenges. Lack of authenticity is a public health risk because incorrectly used herbal species can cause adverse effects. Hence, any measures that may aid product authentication would be beneficial. Given the widespread use of Labisia herbal products, the current study focuses on authenticity testing via an integral approach of DNA barcoding and qualitative analysis using HPLC. This study successfully generated DNA reference barcodes (ITS2 and rbcL) for L. pumila var. alata and pumila. The DNA barcode that was generated was then used to identify species of Labisia pumila in herbal medicinal products, while HPLC was utilized to determine their quality. The findings through the synergistic approach (DNA barcode and HPLC) implemented in this study indicate the importance of both methods in providing the strong evidence required for the identification of true species and to examine the authenticity of such herbal medicinal products.
    Matched MeSH terms: Powders
  9. Revathi Rajan, Yusmazura Zakaria, Shaharum Shamsuddin, Nik Fakhuruddin Nik Hassan
    MyJurnal
    Introduction: Application of nano-engineered fingerprint dusting powders has been a recent trend to achieve latent fingermark development with superior ridge clarity. As such, efforts have been made to utilise natural resources to increase the sustainability of these emerging nano-engineered powders. Lithium-doped zinc oxide, primarily used as white pigments, have been previously applied to latent fingermarks with success. In the current study, nanostruc- tured zinc oxide, synthesised using neem extract as the reducing agent, was evaluated for fingermark development on non-porous surfaces. Methods: The reduction of zinc nitrate hexahydrate was facilitated by neem extract, pre- pared by boiling neem leaves in distilled water. The thick yellow paste recovered was calcined in the furnace to produce a light yellow powder. Physicochemical composition of the powder was determined using microscopic and spectroscopic instruments. The effectiveness of the powder was tested on natural fingermark deposited on several non-porous surfaces. Results: Nanostructured zinc oxide with particle size ranging in between 1 to 3 µm consisting of highly aggregated spherical particle with less than 100 nm dimensions were synthesised. Developed fingermarks revealed excellent ridge details and contrast on dark coloured surfaces. Studying the fingermark closely under scan- ning electron microscope displayed selective distribution of particle on the ridges of the fingermark residue and very minimal deposition on the fingermark valleys. Conclusion: Nanostructured zinc oxide fabricated using green chem- istry approach can be applied for the development of fingermark. Nevertheless, future works can be undertaken to enhance particle dispersity and to confer strong photoluminescence to the zinc oxide nanoparticles.
    Matched MeSH terms: Powders
  10. Ahmed, Moussa Mohamed, Nik Rashida Nik Abdul Ghani, Jami, Mohammed Saedi, Mirghani, Mohamed Elwathig Saeed, Md. Noor Salleh
    MyJurnal
    Boron has been classified as a drinking water pollutant in many countries. It is harmful to many plants, exceptionally sensible plants, and human health. Therefore, boron level needs to be decreased to 0.3 mg/L for drinking water and within 0.5 mg/L to 1 mg/L for irrigation water. In this study, various operational parameters namely pH, contact time and liquid/solid ratio were investigated to determine the potential of using date seed (or date pit or date stone) to remove boron from seawater. This study's main objective was to determine boron adsorption capacities of date seeds prepared by various methods (i.e., powdered, activated, acid-treated and defatted seed) by batch adsorption process using boron contaminated synthetic seawater. The process parameters of the selected biosorbent among the four date seed preparations methods were optimized. The surface characteristics were analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). The results showed that acid-treated date seed was the best biosorbent in terms of removing 89.18% boron from aqueous solution at neutral pH, liquid to solid ratio of 5 within 2 hours of reaction time at room temperature (25°C±2°C).
    Matched MeSH terms: Powders
  11. Alhajj N, Zakaria Z, Naharudin I, Ahsan F, Li W, Wong TW
    Asian J Pharm Sci, 2020 May;15(3):374-384.
    PMID: 32636955 DOI: 10.1016/j.ajps.2019.02.001
    Chitosan nanoparticles are exhalation prone and agglomerative to pulmonary inhalation. Blending nanoparticles with lactose microparticles (∼5 µm) could mutually reduce their agglomeration through surface adsorption phenomenon. The chitosan nanoparticles of varying size, size distribution, zeta potential, crystallinity, shape and surface roughness were prepared by spray drying technique as a function of chitosan, surfactant and processing conditions. Lactose-polyethylene glycol 3000 (PEG3000) microparticles were similarly prepared. The chitosan nanoparticles, physically blended with fine lactose-PEG3000 microparticles, exhibited a comparable inhalation performance with the commercial dry powder inhaler products (fine particle fraction between 20% and 30%). Cascade impactor analysis indicated that the aerosolization and inhalation performance of chitosan nanoparticles was promoted by their higher zeta potential and circularity, and larger size attributes of which led to reduced inter-nanoparticulate aggregation and favored nanoparticles interacting with lactose-PEG3000 micropaticles that aided their delivery into deep and peripheral lungs.
    Matched MeSH terms: Powders
  12. Iqbal DM, Wong LS, Kong SY
    Materials (Basel), 2021 Apr 23;14(9).
    PMID: 33922871 DOI: 10.3390/ma14092175
    The rapid development of the construction sector has led to massive use of raw construction materials, which are at risk of exhaustion. The problem is aggravated by the high demand for cement as binding powder and the mass production of clay bricks for construction purposes. This scenario has led to high energy consumption and carbon emissions in their production. In this regard, bio-cementation is considered a green solution to building construction, because this technology is environmentally friendly and capable of reducing carbon emissions, thus slowing the global warming rate. Most of the previously published articles have focused on microbiologically induced calcium carbonate precipitation (MICP), with the mechanism of bio-cementation related to the occurrence of urea hydrolysis as a result of the urease enzymatic activity by the microbes that yielded ammonium and carbonate ions. These ions would then react with calcium ions under favorable conditions to precipitate calcium carbonate. MICP was investigated for crack repair and the surface treatment of various types of construction materials. Research on MICP for the production of binders in construction materials has become a recent trend in construction engineering. With the development of cutting edge MICP research, it is beneficial for this article to review the recent trend of MICP in construction engineering, so that a comprehensive understanding on microbial utilization for bio-cementation can be achieved.
    Matched MeSH terms: Powders
  13. Au Jee Yuan, Faridah Yahya
    MyJurnal
    The aim of this study was to determine the effect of different ratios of low protein flour to oyster mushroom (Pleurotus sajor-caju) powder on the physicochemical properties and sensory acceptability of edible tablespoon. Fresh grey oyster mushroom was dried in a convection oven at temperature of 55.0˚C ± 2.0˚C for 20 h prior to the grinding process. The low protein flour (LPF) was then incorporated with oyster mushroom powder (OMP) at different ratios of 100:0, 96:4, 92:8, 88:12 and 84:16, before being with vegetable oil, sugar, egg white and water in formulating the edible tablespoon. The proximate analyses were carried out in triplicate for calorie content, colour profile, hardness value and morphological structure of edible tablespoon. This study revealed that with decreasing LPF and increasing OMP in the formulation, the ash content (1.24% to 1.92%), crude fat content (8.98% to 10.40%) and fiber content (0.13% to 1.24%) were observed to have increased as well as the hardness value (2042.03g to 2844.57g) and pore’s size of the morphological structure of edible tablespoon. However, the carbohydrate content (78.64% to 75.56%) significantly decreased (p>0.05) together with L* value (from 68.47 to 61.71) when the decrease was in the the percentage of LPF and an increase the percentage of OMP. The calorie content, moisture content and protein content of edible tablespoon were not significantly (p>0.05) affected by different ratios of LPF to OMP. The edible tablespoon formulated with up to 8% of OMP was accepted by the sensory panelists but further increase in OMP addition significantly decreased the degree of likeness in terms of colour, odour, taste and overall acceptability of edible tablespoon. This study suggested that oyster mushroom edible tablespoon could be potential alternative disposable cutlery which will help to reduce the use of huge amount of non-biodegradable materials for environmental conservation.
    Matched MeSH terms: Powders
  14. SITI RABIATUL ADAWIYAH MAZLI, HANIS MOHD YUSOFF, NURUL HAYATI IDRIS
    MyJurnal
    Synthesis of nanoparticles by using plant have sparked interest among researchers due to environmentally safe, inexpensive and simple method to compare with chemical method. Use of plant in synthesis zinc oxide nanoparticles (ZnO NPs) that act as reducing and capping agent are more recommended, due to high production of product and rate of synthesis is faster than using microorganism. This study focus on the synthesis of ZnO NPs by using leaf extract of aloe vera (Aloe bardenisis miller) with different concentration (30%, 40% and 50%) and various calcination temperature which are 500 ˚C, 700 ˚C and 900 ˚C for 4 hours. Fourier – transform infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM), X-ray Diffraction (XRD) and Brunauer-Emmet and Teller (BET) were used to characterize the prepared samples. FTIR spectra showed present wavenumber in between 400-500 cm-1 indicated the presence of Zn-O stretch. Powder XRD pattern confirmed the hexagonal wurtzite structure with average particles size from 24.19 nm to 67.69 nm for all concentration and temperature by using Scherer’s equation. For SEM analysis the images show irregular shape for concentrations 30% and 50% with size range from 500 nm to 900 nm while for concentration 40% cubic shape was observe with size range from 140 nm to 900 nm. All characterize show that formation of ZnO NPs depend on the concentration and calcination temperature. Sample 30% and 50% ZnO NPs was applied in lithium battery at voltage from 0.01 to 3. 1.2 mAhg-1 was recorded for sample 30% ZnO NPs while 100 mAhg-1.
    Matched MeSH terms: Powders
  15. Umar S, Sulaiman F, Abdullah N, Mohamad SN
    J Nanosci Nanotechnol, 2020 12 01;20(12):7569-7576.
    PMID: 32711628 DOI: 10.1166/jnn.2020.18616
    Conventional thermal fluids with suspended nanoparticles, known as nanofluids, have been developed for heat transfer applications. Heat transfer loss could be reduced significantly if the thermophysical properties of the heat transfer fluid are improved, which to some extent, could reduce the present global environmental challenges associated with energy utilization, such as climate change and global warming. In this work, the role of the concentration of sodium dodecyl-benzene sulfonate (SDBS) in the stability of Al₂O₃/bio-oil nanofluid is investigated the zeta potential value, and its implications to the viscosity and thermal conductivity of the nanofluid are explored. The bio-oil based nanofluid is fixed using a two-step method in which the prepared base fluid is added with 13-nm alumina nanoparticles powder. Various weight fractions of SDBS (0.1, 0.2, 0.4, 0.6, and 1.0 wt%) are used for both 0.1 and 0.2 wt% Al₂O₃ to investigate the significance of the stability of a nanofluid on its thermal conductivity and viscosity. Results indicate that a stable nanofluid has reduced viscosity and increased thermal conductivity.
    Matched MeSH terms: Powders
  16. Nurhani Fatihah Mohd Hanifah, Hanis Nadia Yahya, Norlelawati Arifin
    MyJurnal
    Chia seed has a high content of fibres and polyunsaturated fatty acids. Chia seed also holds numerous amounts of minerals and vitamins, including calcium and phosphorus. Chia seed offers a great potential of gel-forming ability and good water and oil holding capacities. Therefore, this study aims to determine the effect of chia seed powder substitution in chicken meat sausage formulations on the physicochemical characteristics and sensory acceptance. In the study, the chicken meat sausages were produced in four formulations; sample A as the control (100% chicken meat), sample B (5% substitution of chia seed powder to chicken meat), sample C (10% substitution of chia seed powder to chicken meat) and sample D (15% substitution of chia seed powder to chicken meat). The sausages were analysed for colour, texture, water holding capacity, cooking loss, proximate analysis, crude fibre content, and sensory acceptability. As for the findings, the substitution of chia seed powder resulted in low ‘L’ values of chicken meat sausage due to the dark colour of the chia seed. On the other hand, chia seed powder's substitution decreased the hardness and cohesiveness values. However, it increased the adhesiveness, springiness, and chewiness. Water holding capacity and a cooking loss percentage of the chicken meat sausages with chia seed powder substitution were observed to improve compared to control sausage (100% chicken meat), resulting in juicier sausages. The chia seed powder substitution increased the carbohydrate, ash, fat, and fibre contents for the chemical composition. On a 9-point hedonic scale, sample B (5% chia seed powder substitution) exhibited the highest sensory scores in all attributes evaluated (colour, texture, taste, juiciness, and overall acceptance). Thus, it can be concluded that chia seed powder can be substituted in chicken meat sausage to produce better quality products.

    Matched MeSH terms: Powders
  17. Khursheed R, Singh SK, Gulati M, Wadhwa S, Kapoor B, Pandey NK, et al.
    Int J Biol Macromol, 2021 Jul 31;183:1630-1639.
    PMID: 34015408 DOI: 10.1016/j.ijbiomac.2021.05.064
    Ganoderma lucidium extract powder (GLEP) contains various polysaccharides which are well known for their antioxidant and anti-inflammatory actions. Probiotics (PB) are well-established for providing a plethora of health benefits. Hence, use of mushroom polysaccharides and probiotics as carriers to solidify liquisolid formulation is anticipated to function as functional excipients i.e. as adsorbent that may provide therapeutic benefits. Quercetin (QUR) has been used as model lipophilic drug in this study. QUR loaded liquisolid compacts (LSCs) were formulated using Tween 80 as solvent. These were further solidified using a combination of PB and GLEP as carriers. Aerosil-200 (A-200) was used as coating agent. The formulation exhibited very good flow characteristics. Dissolution rate of raw QUR was found to be less than 10% in 60 min while in case of QUR loaded LSCs, more than 90% drug release was observed within 5 min. Absence of crystalline peaks of QUR in the DSC and PXRD reports of LSCs and their porous appearance in SEM micrographs indicate that QUR was successfully incorporated in the LSCs. The developed formulation was found to be stable on storage under accelerated stability conditions.
    Matched MeSH terms: Powders
  18. Sri Asliza, M.A., Zaheruddin, K., Shahrizal, H.
    MyJurnal
    In this study, natural Hydroxyapatite (HA) was extracted from clean cow bone by treatment with NaOH and heating at high temperature before ground into fine powder. The HA powder were than mixed together with binder for several hours. Dense HA were formed in die steel mould by using uniaxially pressing method. Sample was sintered at different temperature 1150, 1200, 1250 and 1300°C for several hours. The phases of specimen were identified using X-ray diffraction (XRD). The mechanical properties were analyzed using three-point bending testing and the microstructure was observed by scanning electron microscopy. From XRD results, natural HA shows phase of pure HA up to 1250 o C and fracture strength results indicated that the mechanical properties of specimen increase as temperature increase. From microstructure observation using SEM, HA specimen shows initial stages of sintering process at temperature 1150°C and show changes in microstructure evolution as temperature increase up to 1300°C.
    Matched MeSH terms: Powders
  19. Mohd Al Amin Muhamad Nor, Maryam Mohd Ridzuan, Zainal Arifin Ahmad
    MyJurnal
    Ceramic materials play key role in several biomedical applications. One of them is bone graft which is use in treating bone defect which caused by injury or osteoporosis. Calcium phosphates based ceramic are preferred as bone grafts in hard tissue engineering because of their chemical compositions are similar to the composition of human bone, superior bioresorbable and bioactivity. In this study, β-tricalcium phosphate (β-TCP) ceramic was synthesized by using sol-gel method. Phosphorous pentoxide (P2O5) and calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) were used as calcium and phosphate precursors. The effects of calcination temperature on the synthesis powder were studied using the XRD, SEM-EDS and FTIR techniques. It was found that calcination temperature greatly influence the purity of the synthesized powders. The β-TCP was the dominant phase with the formation of α-TCP at calcination temperature from 600 to 800°C. Pure β-TCP was obtained at calcination of 900°C. As the temperature increased to 1000°C, the β-TCP was decomposed to for calcium phosphate oxide (CPO). The sol-gel method has some advantages over other methods, mainly its simplicity and ability to produce pure β-TCP at lower calcination temperature.
    Matched MeSH terms: Powders
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links