Displaying publications 121 - 140 of 509 in total

Abstract:
Sort:
  1. Dalu T, Wasserman RJ, Tonkin JD, Alexander ME, Dalu MTB, Motitsoe SN, et al.
    Sci Total Environ, 2017 Dec 01;601-602:1340-1348.
    PMID: 28605853 DOI: 10.1016/j.scitotenv.2017.06.023
    Understanding the drivers of community structure is fundamental for adequately managing ecosystems under global change. Here we used a large dataset of eighty-four headwater stream sites in three catchments in the Eastern Highlands of Zimbabwe, which represent a variety of abiotic conditions and levels of impairment, to examine the drivers of benthic macroinvertebrate community structure. We focused our assessment on macroinvertebrate family level community composition and functional feeding group classifications. Taxonomic richness was weakly positively correlated with ammonium, phosphates and pH, and weakly negatively correlated with detrital cover and dissolved oxygen. Measured abiotic variables, however, had limited influence on both macroinvertebrate diversity and functional feeding group structure, with the exception of ammonium, channel width and phosphates. This reflected the fact that many macroinvertebrate families and functional feeding guilds were well represented across a broad range of habitats. Predatory macroinvertebrates were relatively abundant, with collector-filterers having the lowest relative abundances. The findings of the study suggest that for certain ecological questions, a more detailed taxonomic resolution may be required to adequately understand the ecology of aquatic macroinvertebrates within river systems. We further recommend management and conservation initiatives on the Save River system, which showed significant impact from catchment developmental pressures, such as urbanisation, agriculture and illegal mining.
    Matched MeSH terms: Rivers/chemistry*
  2. Praveena SM, Shaifuddin SNM, Sukiman S, Nasir FAM, Hanafi Z, Kamarudin N, et al.
    Sci Total Environ, 2018 Nov 15;642:230-240.
    PMID: 29902621 DOI: 10.1016/j.scitotenv.2018.06.058
    This study investigated the occurrence of nine pharmaceuticals (amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan) and to evaluate potential risks (human health and ecotoxicological) in Lui, Gombak and Selangor (Malaysia) rivers using commercial competitive Enzyme-Linked Immunosorbent Assay (ELISA) kit assays. Physicochemical properties of these rivers showed the surface samples belong to Class II of Malaysian National Water Quality Standards which requires conventional treatment before consumption. All the pharmaceuticals were detected in all three rivers except for triclosan, dexamethasone and diclofenac which were not detected in few of sampling locations in these three rivers. Highest pharmaceutical concentrations were detected in Gombak river in line of being as one of the most polluted rivers in Malaysia. Ciprofloxacin concentrations were detected in all the sampling locations with the highest at 299.88 ng/L. While triclosan, dexamethasone and diclofenac concentrations were not detected in a few of sampling locations in these three rivers. All these nine pharmaceuticals were within the levels reported previously in literature. Pharmaceutical production, wastewater treatment technologies and treated sewage effluent were found as the potential sources which can be related with pharmaceuticals occurrence in surface water samples. Potential human risk assessment showed low health risk except for ciprofloxacin and dexamethasone. Instead, ecotoxicological risk assessment indicated moderate risks were present for these rivers. Nevertheless, results confirmation using instrumental techniques is needed for higher degree of specificity. It is crucial to continuously monitor the surface water bodies for pharmaceuticals using a cost-effective prioritisation approach to assess sensitive sub-populations risk.
    Matched MeSH terms: Rivers/chemistry
  3. Camara M, Jamil NR, Abdullah AFB, Hashim RB
    Environ Monit Assess, 2019 Nov 08;191(12):729.
    PMID: 31705319 DOI: 10.1007/s10661-019-7906-1
    Managers of water quality and water monitoring programs are often faced with constraints in terms of budget, time, and laboratory capacity for sample analysis. In such situation, the ideal solution is to reduce the number of sampling sites and/or monitored variables. In this case, selecting appropriate monitoring sites is a challenge. To overcome this problem, this study was conducted to statistically assess and identify the appropriate sampling stations of monitoring network under the monitored parameters. To achieve this goal, two sets of water quality data acquired from two different monitoring networks were used. The hierarchical agglomerative cluster analysis (HACA) were used to group stations with similar characteristics in the networks, the time series analysis was then performed to observe the temporal variation of water quality within the station clusters, and the geo-statistical analysis associated Kendall's coefficient of concordance were finally applied to identify the most appropriate and least appropriate sampling stations. Based on the overall result, five stations were identified in the networks that contribute the most to the knowledge of water quality status of the entire river. In addition, five stations deemed less important were identified and could therefore be considered as redundant in the network. This result demonstrated that geo-statistical technique coupled with Kendall's coefficient of concordance can be a reliable method for water resource managers to identify appropriate sampling sites in a river monitoring network.
    Matched MeSH terms: Rivers/chemistry*
  4. Hadibarata T, Kristanti RA, Mahmoud AH
    J Water Health, 2020 Feb;18(1):38-47.
    PMID: 32129185 DOI: 10.2166/wh.2019.100
    The study was performed to examine the occurrence of endocrine disrupting chemicals (EDCs), including four steroid estrogens, one plasticizer, and three preservatives in the Mahakam River, Indonesia. The physicochemical analysis of river water and sediment quality parameters were determined as well as the concentration of EDCs. The range of values for pH, total dissolved solids (TDS), dissolved oxygen (DO), biochemical oxygen demand (BOD), total suspended solids (TSS), nitrate, ammonium, phosphate, and oil/grease in river water and sediment were higher than recommended limits prescribed by the World Health Organization's Guidelines for Drinking-water Quality (GDWQ). Bisphenol A (BPA) was the most widely found EDC with the highest concentration level at 652 ng/L (mean 134 ng/L) in the river water and ranged from ND (not detected) to 952 ng/L (mean 275 ng/L) in the sediment. Correlation analysis to investigate the relationship between the EDCs' concentrations in water and sediment also revealed a significant correlation (R2 = 0.93) between the EDCs' concentrations. High concentrations of EDCs are found in urban and residential areas because these compounds are commonly found in both human and animal bodies, resulting in the disposal of EDCs into canals and rivers in urban and suburban areas, as well as livestock manure and waste that is generated from intensive livestock farming around the suburban area.
    Matched MeSH terms: Rivers/chemistry
  5. Alizamir M, Kisi O, Ahmed AN, Mert C, Fai CM, Kim S, et al.
    PLoS One, 2020;15(4):e0231055.
    PMID: 32287272 DOI: 10.1371/journal.pone.0231055
    Soil temperature has a vital importance in biological, physical and chemical processes of terrestrial ecosystem and its modeling at different depths is very important for land-atmosphere interactions. The study compares four machine learning techniques, extreme learning machine (ELM), artificial neural networks (ANN), classification and regression trees (CART) and group method of data handling (GMDH) in estimating monthly soil temperatures at four different depths. Various combinations of climatic variables are utilized as input to the developed models. The models' outcomes are also compared with multi-linear regression based on Nash-Sutcliffe efficiency, root mean square error, and coefficient of determination statistics. ELM is found to be generally performs better than the other four alternatives in estimating soil temperatures. A decrease in performance of the models is observed by an increase in soil depth. It is found that soil temperatures at three depths (5, 10 and 50 cm) could be mapped utilizing only air temperature data as input while solar radiation and wind speed information are also required for estimating soil temperature at the depth of 100 cm.
    Matched MeSH terms: Rivers/chemistry
  6. Peyman N, Tavakoly Sany SB, Tajfard M, Hashim R, Rezayi M, Karlen DJ
    Environ Sci Process Impacts, 2017 Aug 16;19(8):1086-1103.
    PMID: 28776620 DOI: 10.1039/c7em00200a
    A set of methodological tools was tested to assess the sensitivity of several ecological and biological indices to eutrophication while at the same time attempting to explore a linkage among pressures, classification assessment and drivers. Industrial discharges, harbor activities, natural interactions and river discharges are the pressures most related to the eutrophication process in tropical coastal water bodies. Among the eutrophication indices used, TRIX and operational indicators overestimated the eutrophication status in the study area, but EI and chl-a seems to be a rather responsive index to reflect the first stage of eutrophication. It is noteworthy that EI and chl-a showed better overall agreement with the ecological quality status (EcoQ) showing that probably it reflects the indirect relation of macrobenthic with water eutrophication in a better way. An ecological boundary of EI and chl-a from moderate to poor may be needed in order to explain the poor status of relatively eutrophic Klang Strait coastal sites.
    Matched MeSH terms: Rivers/chemistry*
  7. Boyero L, Graça MAS, Tonin AM, Pérez J, J Swafford A, Ferreira V, et al.
    Sci Rep, 2017 09 05;7(1):10562.
    PMID: 28874830 DOI: 10.1038/s41598-017-10640-3
    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.
    Matched MeSH terms: Rivers*
  8. Rasul MG, Islam MS, Yunus RBM, Mokhtar MB, Alam L, Yahaya FM
    Water Environ Res, 2017 Dec 01;89(12):2088-2102.
    PMID: 28087920 DOI: 10.2175/106143017X14839994522740
      The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.
    Matched MeSH terms: Rivers/chemistry*
  9. Nel HA, Dalu T, Wasserman RJ
    Sci Total Environ, 2018 Jan 15;612:950-956.
    PMID: 28886547 DOI: 10.1016/j.scitotenv.2017.08.298
    Microplastics are important novel pollutants in freshwaters but their behaviour in river sediments is poorly understood due to the large amounts of coloured dissolved organic matter that impede sample processing. The present study aimed to 1.) estimate the microplastic pollution dynamics in an urban river system experiencing temporal differences in river flow, and 2.) investigate the potential use of chironomids as indicators of microplastic pollution levels in degraded freshwater environments. Microplastic levels were estimated from sediment and Chironomus spp. larvae collected from various sites along the Bloukrans River system, in the Eastern Cape South Africa during the summer and winter season. River flow, water depth, channel width, substrate embeddedness and sediment organic matter were simultaneously collected from each site. The winter season was characterised by elevated microplastic abundances, likely as a result of lower energy and increased sediment deposition associated with reduced river flow. In addition, results showed that particle distribution may be governed by various other external factors, such as substrate type and sediment organic matter. The study further highlighted that deposit feeders associated with the benthic river habitats, namely Chironomus spp. ingest microplastics and that the seasonal differences in sediment microplastic dynamics were reflected in chironomid microplastic abundance. There was a positive, though weakly significant relationship between deposit feeders and sediment suggesting that deposit feeders such as Chironomus spp. larvae could serve as an important indicator of microplastic loads within freshwater ecosystems.
    Matched MeSH terms: Rivers*
  10. Keshavarzifard M, Zakaria MP, Hwai TS, Yusuff FM, Mustafa S
    Environ Sci Pollut Res Int, 2015 Jun;22(12):9424-37.
    PMID: 25604562 DOI: 10.1007/s11356-015-4093-7
    In this study, the distributions and sources of sediment-associated polycyclic aromatic hydrocarbons (PAHs) and hopanes in the Malaysian rivers and estuaries were evaluated. The concentrations of 16 USEPA PAHs varied from 225.5 to 293.9 (Perlis River), 195.2 to 481.2 (Kedah River), 791.2 to 1995.4 (Merbok River), 231.2 to 426.7 (Perak River), and 3803.2 to 7442.7 ng g(-1) (Klang River) dry weight. PAHs can be classified as moderate in the Perlis, Kedah, and Perak Rivers, moderate to high in the Merbok River, and high to very high in the Klang River. The comparison of PAHs with sediment quality guidelines (SQGs) indicates that occasionally adverse biological effects may occur from total PAHs, low molecular weight (LMW), and high molecular weight (HMW) PAHs at stations 1, 2, and 3 of the Klang River and from total PAHs at station 2 of the Merbok River. The diagnostic ratios of individual PAHs indicate both petrogenic and pyrogenic origin PAHs with significant dominance of pyrogenic sources in the study areas. The results suggest that Malaysian sediments had hopane ratios (C29/C30) similar to MECO suggesting MECO as a major source of the petroleum hydrocarbons found in the sediments, which is consistent with results reported in previous studies. These findings demonstrate that effective and improved environmental regulations in Malaysia have shifted the source of petroleum hydrocarbons from petrogenic to pyrogenic origin.
    Matched MeSH terms: Rivers/chemistry*
  11. Lee SC, Ngui R, Tan TK, Roslan MA, Ithoi I, Lim YA
    Environ Sci Pollut Res Int, 2014 Jan;21(1):445-53.
    PMID: 23794081 DOI: 10.1007/s11356-013-1925-1
    An aquatic biomonitoring of Giardia cysts and Cryptosporidium oocysts in river water corresponding to five villages situated in three states in peninsular Malaysia was determined. There were 51.3% (20/39) and 23.1% (9/39) samples positive for Giardia and Cryptosporidium (oo)cysts, respectively. Overall mean concentration between villages for Giardia cysts ranged from 0.10 to 25.80 cysts/l whilst Cryptosporidium oocysts ranged from 0.10 to 0.90 oocysts/l. Detailed results of the river samples from five villages indicated that Kuala Pangsun 100% (9/9), Kemensah 77.8% (7/9), Pos Piah 33.3% (3/9) and Paya Lebar 33.3% (1/3) were contaminated with Giardia cysts whilst Cryptosporidium (oo)cysts were only detected in Kemensah (100 %; 9/9) and Kuala Pangsun (66.6%; 6/9). However, the water samples from Bentong were all negative for these waterborne parasites. Samples were collected from lower point, midpoint and upper point. Midpoint refers to the section of the river where the studied communities are highly populated. Meanwhile, the position of the lower point is at least 2 km southward of the midpoint and upper point is at least 2 km northward of the midpoint. The highest mean concentration for (oo)cysts was found at the lower points [3.15 ± 6.09 (oo)cysts/l], followed by midpoints [0.66 ± 1.10 (oo)cysts/l] and upper points [0.66 ± 0.92 (oo)cysts/l]. The mean concentration of Giardia cysts was highest at Kuala Pangsun (i.e. 5.97 ± 7.0 cysts/l), followed by Kemensah (0.83 ± 0.81 cysts/l), Pos Piah (0.20 ± 0.35 cysts/l) and Paya Lebar (0.10 ± 0.19 cysts/l). On the other hand, the mean concentration of Cryptosporidium oocysts was higher at Kemensah (0.31 ± 0.19 cysts/l) compared to Kuala Pangsun (0.03 ± 0.03cysts/l). All the physical and chemical parameters did not show significant correlation with both protozoa. In future, viability status and molecular characterisation of Giardia and Cryptosporidium should be applied to identify species and genotypes/subgenotypes for better understanding of the epidemiology of these waterborne parasites.
    Matched MeSH terms: Rivers/parasitology*
  12. Ismanto A, Hadibarata T, Kristanti RA, Sugianto DN, Widada S, Atmodjo W, et al.
    Mar Pollut Bull, 2023 Nov;196:115563.
    PMID: 37797535 DOI: 10.1016/j.marpolbul.2023.115563
    This study aimed to address the pressing issue of plastic pollution in aquatic ecosystems by assessing the prevalence and distribution of microplastics (MPs) in water and riverbank sediments of the Pekalongan River, a vital water source in Indonesia. From the present findings, MP concentrations in water ranged from 45.2 to 99.1 particles/L, while sediment concentrations ranged from 0.77 to 1.01 particles/g. This study revealed that fragment and film MPs constituted 30.1 % and 25.4 % of the total, respectively, with MPs measuring <1 mm and constituting 51.4 % of the total. Colored MPs, particularly blue and black MPs, accounted for 34 % of the total. The primary polymer components, as determined via Fourier transform infrared spectroscopy, were identified as polystyrene, polyester, and polyamide. In response to the escalating plastic waste crisis caused by single-use plastics, Pekalongan's local government implemented refuse segregation and recycling programs as part of its efforts to transition toward zero-waste practices.
    Matched MeSH terms: Rivers/chemistry
  13. Kamaruzzaman BY, Ongand MC, Khali AH
    Pak J Biol Sci, 2007 Apr 01;10(7):1103-7.
    PMID: 19070059
    Muscle, stomach and gill from four dominant fish species, Mytus nemurus, Pristolepis fasciata, Ompok bimaculatus and Osteochilus hasseltii, caught from Bebar peat swamp forest river were analyzed for mercury (Hg). The concentration of Hg was measured with a fast and sensitive Flow Injector Mercury Spectrometer (FIMS). The average Hg concentration of all species caught was 0.169 microg g(-1) dry weights, lower than a limit for human consumption recommended by the World Health Organization, 0.5 microg g(-1) dry weights. The mean concentration of Hg was relatively high in stomach (0.28 +/- 0.12 microg g(-1) dry weights) followed by gill (0.17 +/- 0.06 microg g(-1) dry weights) and lowest in muscle (0.05 +/- 0.02 microg g(-1) dry weights). The positive relationship of Hg with fish length and weight suggesting that the accumulation of Hg were formed in the fish.
    Matched MeSH terms: Rivers/chemistry*
  14. Gantayat RR, Mohan Viswanathan P, Ramasamy N, Sabarathinam C
    Environ Sci Pollut Res Int, 2023 Aug;30(40):92692-92719.
    PMID: 37495801 DOI: 10.1007/s11356-023-28596-5
    A comprehensive geochemical study was conducted in the Sibuti River estuary by considering water, suspended solids (SS), and sediment samples from 36 stations during southwest monsoon (SWM) and northeast monsoon (NEM). In this study, the distribution of in situ parameters, major ions, nutrients, trace metals, and isotopes (δD, δ18O) were analyzed in water samples, whereas sediments and SS were studied for trace metals. The distribution revealed that suspended solids were the major carrier of Cd, Zn, and Mn, whereas sediments worked as a major source of Co, Cr, Ba, Se, Cu, and Pb. Na-Cl water type and ion exchange dominated the lower part of the estuary during both seasons. However, the mixed mechanism of Ca-Cl, Ca-Mg-Cl, and higher weathering indicated reverse ion exchange in the intermediate and upper parts of the estuary. Isotopic signatures of δD and δ18O in estuarine water indicate that the precipitation over the Limbang area dominates during SWM, whereas higher evaporation was confirmed during NEM. The factor analysis revealed that seawater influence in the estuary majority controlled the water chemistry irrespective of seasons. Major ions were mainly regulated by the tidal influence during the low flow time of the river (SWM), whereas the mixing mechanism of weathering and seawater controlled the concentrations during NEM. Nutrients such as NO3, SO42-, NH3, and NH4+ mainly originated from the agricultural fields and nitrification along with ammonification were responsible for the recycling of such nutrients. Trace metals except Cd were found to be geogenic in nature and originating mainly from the oxidation of pyrites present in the sandstone and mudstones of the Sibuti Formation. Redox condition was catalyzed by microorganisms near the river mouth, whereas Al-oxyhydroxides and Fe-oxyhydroxides complexes in the intermediate and upper part under oxygenated conditions controlled the absorption of metals. Overall, the estuary was found to be absorptive in nature due to ideal pH conditions and was confirmed by the saturation index (SI) of minerals.
    Matched MeSH terms: Rivers/chemistry
  15. Su W, Yu Q, Yang J, Han Q, Wang S, Heděnec P, et al.
    J Environ Sci (China), 2024 Aug;142:236-247.
    PMID: 38527889 DOI: 10.1016/j.jes.2023.06.016
    The response patterns of microbial functional genes involved in biogeochemical cycles to cadaver decay is a central topic of recent environmental sciences. However, the response mechanisms and pathways of the functional genes associated with the carbon (C) and nitrogen (N) cycling to cadaveric substances such as cadaverine and putrescine remain unclear. This study explored the variation of functional genes associated with C fixation, C degradation and N cycling and their influencing factors under cadaverine, putrescine and mixed treatments. Our results showed only putrescine significantly increased the alpha diversity of C fixation genes, while reducing the alpha diversity of N cycling genes in sediment. For the C cycling, the mixed treatment significantly decreased the total abundance of reductive acetyl-CoA pathway genes (i.e., acsB and acsE) and lig gene linked to lignin degradation in water, while only significantly increasing the hydroxypropionate-hydroxybutylate cycle (i.e., accA) gene abundance in sediment. For the N cycling, mixed treatment significantly decreased the abundance of the nitrification (i.e., amoB), denitrification (i.e., nirS3) genes in water and the assimilation pathway gene (i.e., gdhA) in sediment. Environmental factors (i.e., total carbon and total nitrogen) were all negatively associated with the genes of C and N cycling. Therefore, cadaverine and putrescine exposure may inhibit the pathway in C fixation and N cycling, while promoting C degradation. These findings can offer some new insight for the management of amine pollution caused by animal cadavers.
    Matched MeSH terms: Rivers/chemistry
  16. Homayounfar M, Zomorodian M, Martinez CJ, Lai SH
    PLoS One, 2015;10(12):e0143198.
    PMID: 26641095 DOI: 10.1371/journal.pone.0143198
    So far many optimization models based on Nash Bargaining Theory associated with reservoir operation have been developed. Most of them have aimed to provide practical and efficient solutions for water allocation in order to alleviate conflicts among water users. These models can be discussed from two viewpoints: (i) having a discrete nature; and (ii) working on an annual basis. Although discrete dynamic game models provide appropriate reservoir operator policies, their discretization of variables increases the run time and causes dimensionality problems. In this study, two monthly based non-discrete optimization models based on the Nash Bargaining Solution are developed for a reservoir system. In the first model, based on constrained state formulation, the first and second moments (mean and variance) of the state variable (water level in the reservoir) is calculated. Using moment equations as the constraint, the long-term utility of the reservoir manager and water users are optimized. The second model is a dynamic approach structured based on continuous state Markov decision models. The corresponding solution based on the collocation method is structured for a reservoir system. In this model, the reward function is defined based on the Nash Bargaining Solution. Indeed, it is used to yield equilibrium in every proper sub-game, thereby satisfying the Markov perfect equilibrium. Both approaches are applicable for water allocation in arid and semi-arid regions. A case study was carried out at the Zayandeh-Rud river basin located in central Iran to identify the effectiveness of the presented methods. The results are compared with the results of an annual form of dynamic game, a classical stochastic dynamic programming model (e.g. Bayesian Stochastic Dynamic Programming model, BSDP), and a discrete stochastic dynamic game model (PSDNG). By comparing the results of alternative methods, it is shown that both models are capable of tackling conflict issues in water allocation in situations of water scarcity properly. Also, comparing the annual dynamic game models, the presented models result in superior results in practice. Furthermore, unlike discrete dynamic game models, the presented models can significantly reduce the runtime thereby avoiding dimensionality problems.
    Matched MeSH terms: Rivers
  17. Azamathulla HM, Zakaria NA
    Water Sci Technol, 2011;63(10):2225-30.
    PMID: 21977642
    The process involved in the local scour below pipelines is so complex that it makes it difficult to establish a general empirical model to provide accurate estimation for scour. This paper describes the use of artificial neural networks (ANN) to estimate the pipeline scour depth. The data sets of laboratory measurements were collected from published works and used to train the network or evolve the program. The developed networks were validated by using the observations that were not involved in training. The performance of ANN was found to be more effective when compared with the results of regression equations in predicting the scour depth around pipelines.
    Matched MeSH terms: Rivers
  18. Tan GH, Chong CL
    Environ Monit Assess, 1993 Feb;24(3):267-77.
    PMID: 24227384 DOI: 10.1007/BF00545983
    The Klang River Basin is located in the most densely populated region in Malaysia, with its heavy concentration of industries and population. A systematic study of the pollution to this river system caused by phenolic compounds have been carried out under this project. Analyses of water samples from the Klang River by high performance liquid chromatography (HPLC) with an ultraviolet (UV) detector at 280 nm have shown the presence of some priority phenolic pollutants.
    Matched MeSH terms: Rivers
  19. Tan WT, Tan GS, Nather Khan IS
    Environ Pollut, 1988;52(3):221-35.
    PMID: 15092608
    Chemical forms of copper and lead in river water of the Linggi River Basin have been fractionated into ASV labile, moderately labile, slowly labile, and inert metal species, based on a previously proposed scheme. Free (hydrated) metal ions were identified by a potentiometric method using an ion selective electrode. Speciation results showed that the soluble copper and lead species occurred mainly in the moderately labile and slowly labile fractions. The speciation results are primarily interpreted in terms of organic interaction due to agricultural based and light industries, and urban discharges. The measured metal complexing capacity (MCC) of the samples reveals consistency of the results with the nature of the discharge. MCC correlates reasonably well with the value from the permanganate test on the river water. In general, the speciation pattern was found to be consistent with the findings of other workers.
    Matched MeSH terms: Rivers
  20. Mustafa S, Bahar A, Aziz ZA, Darwish M
    J Contam Hydrol, 2020 Aug;233:103662.
    PMID: 32569923 DOI: 10.1016/j.jconhyd.2020.103662
    This article provides an analytical solute transport model to investigate the potential of groundwater contamination by polluted surface water in a two dimensional domain. The clogging of streambed which makes the aquifer partially penetrated by the stream, is considered in the model. The impacts of pumping process, hydraulic conductivity and clogging layer on the quality of water produced from nearby drinking water wells are evaluated. It is found that results are consistent with numerical simulation conducted by MODFLOW software. Moreover, the model is applied using data of contamination occurrence in Malaysia, where high contaminants concentrations are found close to streams. Results show that the pumping activities (rate and time period) are crucial factors when evaluating the risk of groundwater contamination from surface water. Additionally, this study illustrates that the increase in either hydraulic conductivity or leakance coefficient parameters due to the clogging layer will enlarge the area of contamination. The model is able to determine the suitable pumping rate and location of the well so that the contamination plume never reaches the extraction well, which is useful in constructing riverbank filtration sites.
    Matched MeSH terms: Rivers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links