Displaying publications 141 - 160 of 296 in total

Abstract:
Sort:
  1. Rawat S, Gupta G, Pathak S, Singh SK, Singh H, Mishra A, et al.
    EXCLI J, 2020;19:635-640.
    PMID: 32536834
  2. Wadhwa R, Paudel KR, Mehta M, Shukla SD, Sunkara K, Prasher P, et al.
    CNS Neurol Disord Drug Targets, 2020;19(9):698-708.
    PMID: 33109069 DOI: 10.2174/1871527319999200817112427
    Tobacco smoke is not only a leading cause for chronic obstructive pulmonary disease, cardiovascular disorders, and lung and oral cancers, but also causes neurological disorders such as Alzheimer 's disease. Tobacco smoke consists of more than 4500 toxic chemicals, which form free radicals and can cross blood-brain barrier resulting in oxidative stress, an extracellular amyloid plaque from the aggregation of amyloid β (Aβ) peptide deposition in the brain. Further, respiratory infections such as Chlamydia pneumoniae, respiratory syncytial virus have also been involved in the induction and development of the disease. The necessary information collated on this review has been gathered from various literature published from 1995 to 2019. The review article sheds light on the role of smoking and respiratory infections in causing oxidative stress and neuroinflammation, resulting in Alzheimer's disease (AD). This review will be of interest to scientists and researchers from biological and medical science disciplines, including microbiology, pharmaceutical sciences and the translational researchers, etc. The increasing understanding of the relationship between chronic lung disease and neurological disease is two-fold. First, this would help to identify the risk factors and possible therapeutic interventions to reduce the development and progression of both diseases. Second, this would help to reduce the probable risk of development of AD in the population prone to chronic lung diseases.
  3. Prasher P, Sharma M, Mehta M, Paudel KR, Satija S, Chellappan DK, et al.
    Chem Biol Interact, 2020 Jul 01;325:109125.
    PMID: 32376238 DOI: 10.1016/j.cbi.2020.109125
    The apparent predicament of the representative chemotherapy for managing respiratory distress calls for an obligatory deliberation for identifying the pharmaceuticals that effectively counter the contemporary intricacies associated with target disease. Multiple, complex regulatory pathways manifest chronic pulmonary disorders, which require chemotherapeutics that produce composite inhibitory effect. The cost effective natural product based molecules hold a high fervor to meet the prospects posed by current respiratory-distress therapy by sparing the tedious drug design and development archetypes, present a robust standing for the possible replacement of the fading practice of poly-pharmacology, and ensure the subversion of a potential disease relapse. This study summarizes the experimental evidences on natural products moieties and their components that illustrates therapeutic efficacy on respiratory disorders.
  4. Bisht A, Hemrajani C, Upadhyay N, Nidhi P, Rolta R, Rathore C, et al.
    Ther Deliv, 2022 Jan;13(1):13-29.
    PMID: 34842461 DOI: 10.4155/tde-2021-0059
    Aim: Azelaic acid (AzA), a comedolytic, antibacterial, anti-inflammatory anti-melanogenic agent, prescribed against acne vulgaris is safe on skin. Its combination with another widely used anti-acne agent, tea tree oil (EO) whose delivery is limited by volatility, instability and lipophilicity constraints was attempted. Method: Solvent injection was used to prepare AzA-EO integrated ethosomes. Result: Ethosomes were transformed into carbopol hydrogel, which exhibited pseudo-plastic properties with appreciable firmness, work of shear, stickiness and work of adhesion. The hydrogel showed better permeation and retention characteristics vis-a-vis commercial formulation (AzidermTM), when evaluated in Wistar rat skin. Further, ethosome hydrogel composite was better tolerated with no side effects. Conclusion: The findings suggests that the aforementioned strategy could be a potential treatment used for acne management.
  5. Negi P, Gautam S, Sharma A, Rathore C, Sharma L, Upadhyay N, et al.
    Ther Deliv, 2022 Feb;13(2):81-93.
    PMID: 35075915 DOI: 10.4155/tde-2021-0062
    Background: Chebulinic acid (CA), a component in Terminalia chebula, exhibits antiulcer activity, but has poor aqueous solubility. Raft-forming systems incorporating solid dispersions (SDs) of CA, were developed to overcome its poor biopharmaceutical properties and to prolong the gastric residence time for maximum activity. Methods: SDs were formulated by a solvent evaporation method using Eudragit EPO. Raft formulations consisted of sodium alginate as a polymer. Results: Release of CA in the dissolution medium was 40%, whereas SDs showed 95.45% release. The CA raft system (20 mg/kg) showed curative efficacy in an alcohol-induced gastric ulcer model and increased protection when compared with omeprazole (10 mg/kg) and CA suspension (20 mg/kg). Conclusion: These studies demonstrated SD raft systems to be a promising approach for antiulcer therapy by CA.
  6. Kou J, Xin TY, McCarron P, Gupta G, Dureja H, Satija S, et al.
    J Environ Pathol Toxicol Oncol, 2020;39(2):125-136.
    PMID: 32749122 DOI: 10.1615/JEnvironPatholToxicolOncol.2020032665
    Biofilms are a collective of multiple types of bacteria that develop on a variety of surfaces. Biofilm development results in heightened resistance to antibiotics. Quorum sensing plays an important role in biofilm development as it is one of the common communication mechanisms within cells, which balances and stabilizes the environment, when the amount of bacteria increases. Because of the important implications of the roles biofilms play in infectious diseases, it is crucial to investigate natural antibacterial agents that are able to regulate biofilm formation and development. Various studies have suggested that natural plant products have the potential to suppress bacterial growth and exhibit chemopreventive traits in the modulation of biofilm development. In this review, we discuss and collate potential antibiofilm drugs and biological molecules from natural sources, along with their underlying mechanisms of action. In addition, we also discuss the antibiofilm drugs that are currently under clinical trials and highlight their potential future uses.
  7. Khursheed R, Singh SK, Wadhwa S, Gulati M, Kapoor B, Jain SK, et al.
    Int J Biol Macromol, 2021 Oct 31;189:744-757.
    PMID: 34464640 DOI: 10.1016/j.ijbiomac.2021.08.170
    The role of mushroom polysaccharides and probiotics as pharmaceutical excipients for development of nanocarriers has never been explored. In the present study an attempt has been made to explore Ganoderma lucidum extract powder (GLEP) containing polysaccharides and probiotics to convert liquid self nanoemulsifying drug delivery system (SNEDDS) into solid free flowing powder. Two lipophilic drugs, curcumin and quercetin were used in this study due to their dissolution rate limited oral bioavailability and poor permeability. These were loaded into liquid SNEDDS by dissolving them into isotropic mixture of Labrafill M1944CS, Capmul MCM, Tween-80 and Transcutol P. The liquid SNEDDS were solidified using probiotics and mushroom polysaccharides as carriers and Aerosil-200 as coating agent. The solidification was carried out using spray drying process. The process and formulation variables for spray drying process of liquid SNEDDS were optimized using Box Behnken Design to attain required powder properties. The release of both drugs from the optimized spray dried (SD) formulation was found to be more than 90%, whereas, it was less than 20% for unprocessed drugs. The results of DSC, PXRD and SEM, showed that the developed L-SNEDDS preconcentrate was successfully loaded onto the porous surface of probiotics, mushroom polysaccharides and Aerosil-200.
  8. Chellappan DK, Chellian J, Ng ZY, Sim YJ, Theng CW, Ling J, et al.
    Biomed Pharmacother, 2017 Dec;96:768-781.
    PMID: 29054093 DOI: 10.1016/j.biopha.2017.10.058
    Pazopanib is a relatively new compound to be introduced into the chemotherapy field. It is thought to have decent anti-angiogenic properties, which gives an additional hope for the treatment of certain types of cancers. A systematic review solely discussing about pazopanib and its anti-angiogenic effect is yet to be published to date, despite several relevant clinical trials being conducted over the recent years. In this review, we aim to investigate the mechanism of pazopanib's anti-angiogenic effect and its effectiveness in treating several cancers. We have included, in this study, findings from electronically searchable data from randomized clinical trials, clinical studies, cohort studies and other relevant articles. A total of 352 studies were included in this review. From the studies, the effect of pazopanib in various cancers or models was observed and recorded. Study quality is indefinite, with a few decent quality articles. The most elaborately studied cancers include renal cell carcinoma, solid tumors, advanced solid tumors, soft tissue sarcoma, breast cancer and gynecological cancers. In addition, several less commonly studied cancers are included in the studies as well. Pazopanib had demonstrated its anti-angiogenic effect based on favorable results observed in cancers, which are caused by angiogenesis-related mechanisms, such as renal cell carcinoma, solid tumors, advanced solid tumors and soft tissue sarcoma. This review was conducted to study, analyze and review the anti-angiogenic properties of pazopanib in various cancers. The results obtained can provide a decent reference when considering treatment options for angiogenesis-related malignancies. Furthermore, the definite observations of the anti-angiogenic effects of pazopanib could provide newer insights leading to the future development of drugs of the same mechanism with increased efficiency and reduced adverse effects.
  9. Chan Y, Ng SW, Singh SK, Gulati M, Gupta G, Chaudhary SK, et al.
    Life Sci, 2021 Sep 01;280:119744.
    PMID: 34174324 DOI: 10.1016/j.lfs.2021.119744
    Viral respiratory tract infections have significantly impacted global health as well as socio-economic growth. Respiratory viruses such as the influenza virus, respiratory syncytial virus (RSV), and the recent SARS-CoV-2 infection (COVID-19) typically infect the upper respiratory tract by entry through the respiratory mucosa before reaching the lower respiratory tract, resulting in respiratory disease. Generally, vaccination is the primary method in preventing virus pathogenicity and it has been shown to remarkably reduce the burden of various infectious diseases. Nevertheless, the efficacy of conventional vaccines may be hindered by certain limitations, prompting the need to develop novel vaccine delivery vehicles to immunize against various strains of respiratory viruses and to mitigate the risk of a pandemic. In this review, we provide an insight into how polymer-based nanoparticles can be integrated with the development of vaccines to effectively enhance immune responses for combating viral respiratory tract infections.
  10. Manvati S, Mangalhara KC, Kalaiarasan P, Chopra R, Agarwal G, Kumar R, et al.
    Cancer Cell Int, 2019;19:230.
    PMID: 31516387 DOI: 10.1186/s12935-019-0933-8
    Background: Despite several reports describing the dual role of miR-145 as an oncogene and a tumor suppressor in cancer, not much has been resolved and understood.

    Method: In this study, the potential targets of miR-145 were identified bio-informatically using different target prediction tools. The identified target genes were validated in vitro by dual luciferase assay. Wound healing and soft agar colony assay assessed cell proliferation and migration. miR-145 expression level was measured quantitatively by RT-PCR at different stages of breast tumor. Western blot was used to verify the role of miR-145 in EMT transition using key marker proteins.

    Result: Wound healing and soft agar colony assays, using miR-145 over-expressing stably transfected MCF7 cells, unraveled its role as a pro-proliferation candidate in cancerous cells. The association between miR-145 over-expression and differential methylation patterns in representative target genes (DR5, BCL2, TP53, RNF8, TIP60, CHK2, and DCR2) supported the inference drawn. These in vitro observations were validated in a representative set of nodal positive tumors of stage 3 and 4 depicting higher miR-145 expression as compared to early stages. Further, the role of miR-145 in epithelial-mesenchymal (EMT) transition found support through the observation of two key markers, Vimentin and ALDL, where a positive correlation with Vimentin protein and a negative correlation with ALDL mRNA expression were observed.

    Conclusion: Our results demonstrate miR-145 as a pro-cancerous candidate, evident from the phenotypes of aggressive cellular proliferation, epithelial to mesenchymal transition, hypermethylation of CpG sites in DDR and apoptotic genes and upregulation of miR-145 in later stages of tumor tissues.

  11. Corrie L, Kaur J, Awasthi A, Vishwas S, Gulati M, Saini S, et al.
    Pharmaceutics, 2022 Nov 06;14(11).
    PMID: 36365213 DOI: 10.3390/pharmaceutics14112395
    The study was initiated with two major purposes: investigating the role of isomalt (GIQ9) as a pharmaceutical carrier for solid self-nanoemulsifying drug delivery systems (S-SNEDDSs) and improving the oral bioavailability of lipophilic curcumin (CUN). GIQ9 has never been explored for solidification of liquid lipid-based nanoparticles such as a liquid isotropic mixture of a SNEDDS containing oil, surfactant and co-surfactant. The suitability of GIQ9 as a carrier was assessed by calculating the loading factor, flow and micromeritic properties. The S-SNEDDSs were prepared by surface adsorption technique. The formulation variables were optimized using central composite design (CCD). The optimized S-SNEDDS was evaluated for differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), microscopy, dissolution and pharmacokinetic studies. The S-SNEDDS showed a particle size, zeta potential and PDI of 97 nm, -26.8 mV and 0.354, respectively. The results of DSC, XRD, FTIR and microscopic studies revealed that the isotropic mixture was adsorbed onto the solid carrier. The L-SNEDDS and S-SNEDDS showed no significant difference in drug release, indicating no change upon solidification. The optimized S-SNEDDS showed 5.1-fold and 61.7-fold enhancement in dissolution rate and oral bioavailability as compared to the naïve curcumin. The overall outcomes of the study indicated the suitability of GIQ9 as a solid carrier for SNEDDSs.
  12. Harish V, Tewari D, Mohd S, Govindaiah P, Babu MR, Kumar R, et al.
    Pharmaceutics, 2022 Nov 07;14(11).
    PMID: 36365221 DOI: 10.3390/pharmaceutics14112403
    Many natural products with greater therapeutic efficacy are limited to target several chronic diseases such as cancer, diabetes, and neurodegenerative diseases. Among the natural products from hops, i.e., Xanthohumol (XH), is a prenylated chalcone. The present research work focuses on the enhancement of the poor oral bioavailability and weak pharmacokinetic profile of XH. We exemplified the development of a Xanthohumol-loaded solid lipid nanoparticles (XH-SLNs) cargo system to overcome the limitations associated with its bioavailability. The XH-SLNs were prepared by a high-shear homogenization/ultrasonication method and graphical, numerical optimization was performed by using Box-Behnken Design. Optimized XH-SLNs showed PS (108.60 nm), PDI (0.22), ZP (-12.70 mV), %EE (80.20%) and an amorphous nature that was confirmed by DSC and PXRD. FE-SEM and HRTEM revealed the spherical morphology of XH-SLNs. The results of release studies were found to be 9.40% in 12 h for naive XH, whereas only 28.42% of XH was released from XH-SLNs. The slow release of drugs may be due to immobilization of XH in the lipid matrix. In vivo pharmacokinetic study was performed for the developed XH-SLNs to verify the enhancement in the bioavailability of XH than naive XH. The enhancement in the bioavailability of the XH was confirmed from an increase in Cmax (1.07-folds), AUC0-t (4.70-folds), t1/2 (6.47-folds) and MRT (6.13-folds) after loading into SLNs. The relative bioavailability of XH loaded in SLNs and naive XH was found to be 4791% and 20.80%, respectively. The cytotoxicity study of naive XH, XH-SLNs were performed using PC-3 cell lines by taking camptothecin as positive control. The results of cytotoxicity study revealed that XH-SLNs showed good cell inhibition in a sustained pattern. This work successfully demonstrated formulation of XH-SLNs with sustained release profile and improved oral bioavailability of XH with good anticancer properties against PC-3 cells.
  13. Alharbi KS, Almalki WH, Makeen HA, Albratty M, Meraya AM, Nagraik R, et al.
    J Food Biochem, 2022 Dec;46(12):e14387.
    PMID: 36121313 DOI: 10.1111/jfbc.14387
    Breast cancer (BC) is one of the most challenging cancers to treat, accounting for many cancer-related deaths. Over some years, chemotherapy, hormone treatment, radiation, and surgeries have been used to treat cancer. Unfortunately, these treatment options are unsuccessful due to crucial adverse reactions and multidrug tolerance/resistance. Although it is clear that substances in the nutraceuticals category have a lot of anti-cancer activity, using a supplementary therapy strategy, in this case, could be very beneficial. Nutraceuticals are therapeutic agents, which are nutrients that have drug-like characteristics and can be used to treat diseases. Plant nutraceuticals categorized into polyphenols, terpenoids, vitamins, alkaloids, and flavonoids are part of health food products, that have great potential for combating BC. Nutraceuticals can reduce BC's severity, limit malignant cell growth, and modify cancer-related mechanisms. Nutraceuticals acting by attenuating Hedgehog, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Notch, and Wnt/β-catenin signaling are the main pathways in controlling the self-renewal of breast cancer stem cells (BCSCs). This article reviews some important nutraceuticals and their modes of action, which can be very powerful versus BC. PRACTICAL APPLICATIONS: Nutraceuticals' importance to the control and diagnosis of breast cancer is undeniable and cannot be overlooked. Natural dietary compounds have a wide range of uses and have been used in traditional medicine. In addition, these natural chemicals can enhance the effectiveness of other traditional medicines. They may also be used as a treatment process independently because of their capacity to affect several cancer pathways. This study highlights a variety of natural chemicals, and their mechanisms of action, routes, synergistic effects, and future potentials are all examined.
  14. De Rubis G, Paudel KR, Manandhar B, Singh SK, Gupta G, Malik R, et al.
    Nutrients, 2023 Feb 17;15(4).
    PMID: 36839377 DOI: 10.3390/nu15041019
    Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1β, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.
  15. Sharma A, Shambhwani D, Pandey S, Singh J, Lalhlenmawia H, Kumarasamy M, et al.
    ACS Omega, 2023 Jan 10;8(1):10-41.
    PMID: 36643475 DOI: 10.1021/acsomega.2c04078
    Carcinoma of the lungs is among the most menacing forms of malignancy and has a poor prognosis, with a low overall survival rate due to delayed detection and ineffectiveness of conventional therapy. Therefore, drug delivery strategies that may overcome undesired damage to healthy cells, boost therapeutic efficacy, and act as imaging tools are currently gaining much attention. Advances in material science have resulted in unique nanoscale-based theranostic agents, which provide renewed hope for patients suffering from lung cancer. Nanotechnology has vastly modified and upgraded the existing techniques, focusing primarily on increasing bioavailability and stability of anti-cancer drugs. Nanocarrier-based imaging systems as theranostic tools in the treatment of lung carcinoma have proven to possess considerable benefits, such as early detection and targeted therapeutic delivery for effectively treating lung cancer. Several variants of nano-drug delivery agents have been successfully studied for therapeutic applications, such as liposomes, dendrimers, polymeric nanoparticles, nanoemulsions, carbon nanotubes, gold nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, hydrogels, and micelles. In this Review, we present a comprehensive outline on the various types of overexpressed receptors in lung cancer, as well as the various targeting approaches of nanoparticles.
  16. Rohilla S, Singh M, Priya S, Almalki WH, Haniffa SM, Subramaniyan V, et al.
    PMID: 36734949 DOI: 10.1615/JEnvironPatholToxicolOncol.2022042088
    Melatonin is a serotonin-derived pineal gland hormone with many biological functions like regulating the sleep-wake cycle, circadian rhythm, menstrual cycle, aging, immunity, and antioxidants. Melatonin synthesis and release are more pronounced during the night, whereas exposure to light decreases it. Evidence is mounting in favor of the therapeutic effects of melatonin in cancer prevention, treatment and delayed onset in various cancer subtypes. Melatonin exerts its anticancer effect through modification of its receptors such as melatonin 1 (MT1), melatonin 2 (MT2), and inhibition of cancer cell proliferation, epigenetic alterations (DNA methylation/demethylation, histone acetylation/deacetylation), metastasis, angiogenesis, altered cellular energetics, and immune evasion. Melatonin performs a significant function in immune modulation and enhances innate and cellular immunity. In addition, melatonin has a remarkable impact on epigenetic modulation of gene expression and alters the transcription of genes. As an adjuvant to cancer therapies, it acts by decreasing the side effects and boosting the therapeutic effects of chemotherapy. Since current treatments produce drug-induced unwanted toxicities and side effects, they require alternate therapies. A recent review article attempts to summarize the mechanistic perspective of melatonin in different cancer subtypes like skin cancer, breast cancer, hepatic cancer, renal cell cancer, non-small cell lung cancer (NSCLC), colon oral, neck, and head cancer. The various studies described in this review will give a firm basis for the future evolution of anticancer drugs.
  17. Rohilla S, Singh M, Alzarea SI, Almalki WH, Al-Abbasi FA, Kazmi I, et al.
    PMID: 36734951 DOI: 10.1615/JEnvironPatholToxicolOncol.2022042983
    Treatment of lung cancer with conventional therapies, which include radiation, surgery, and chemotherapy results in multiple undesirable adverse or side effects. The major clinical challenge in developing new drug therapies for lung cancer is resistance, which involves mutations and disturbance in various signaling pathways. Molecular abnormalities related to epidermal growth factor receptor (EGFR), v-Raf murine sarcoma viral oncogene homolog B1 (B-RAF) Kirsten rat sarcoma virus (KRAS) mutations, translocation of the anaplastic lymphoma kinase (ALK) gene, mesenchymal-epithelial transition factor (MET) amplification have been studied to overcome the resistance and to develop new therapies for non-small cell lung cancer (NSCLC). But, inevitable development of resistance presents limits the clinical benefits of various new drugs. Here, we review current progress in the development of molecularly targeted therapies, concerning six clinical biomarkers: EGFR, ALK, MET, ROS-1, KRAS, and B-RAF for NSCLC treatment.
  18. Alharbi KS, Javed Shaikh MA, Imam SS, Alshehri S, Ghoneim MM, Almalki WH, et al.
    Curr Med Chem, 2023;30(18):2061-2074.
    PMID: 36415096 DOI: 10.2174/0929867330666221122115212
    More than 10 million people worldwide have Alzheimer's disease (AD), a degenerative neurological illness and the most prevalent form of dementia. AD's progression in memory loss, cognitive deterioration, and behavioral changes are all symptoms. Amyloid-beta 42 (Aβ42), the hyperphosphorylated forms of microtubule-associated tau protein, and other cellular and systemic alterations are all factors that contribute to cognitive decline in AD. Rather than delivering a possible cure, present therapy strategies focus on reducing disease symptoms. It has long been suggested that various naturally occurring small molecules (plant extract products and microbiological isolates, for example) could be beneficial in preventing or treating disease. Small compounds, such as flavonoids, have attracted much interest recently due to their potential to alleviate cellular stress. Flavonoids have been proven helpful in various ways, including antioxidants, anti-inflammatory agents, and anti-apoptotic agents, but their mechanism remains unknown. The flavonoid therapy of Alzheimer's disease focuses on this review, which includes a comprehensive literature analysis.
  19. Pandey M, Wen PX, Ning GM, Xing GJ, Wei LM, Kumar D, et al.
    Nanomedicine (Lond), 2022 Oct;17(24):1871-1889.
    PMID: 36695306 DOI: 10.2217/nnm-2022-0234
    Ductal carcinoma in situ describes the most commonly occurring, noninvasive malignant breast disease, which could be the leading factor in invasive breast cancer. Despite remarkable advancements in treatment options, poor specificity, low bioavailability and dose-induced toxicity of chemotherapy are the main constraint. A unique characteristic of nanocarriers may overcome these problems. Moreover, the intraductal route of administration serves as an alternative approach. The direct nanodrug delivery into mammary ducts results in the accumulation of anticancer agents at targeted tissue for a prolonged period with high permeability, significantly decreasing the tumor size and improving the survival rate. This review focuses mainly on the intraductal delivery of nanocarriers in treating ductal carcinoma in situ, together with potential clinical translational research.
  20. Kaur J, Gulati M, Corrie L, Awasthi A, Jha NK, Chellappan DK, et al.
    Nanomedicine (Lond), 2022 Oct;17(25):1951-1960.
    PMID: 36606499 DOI: 10.2217/nnm-2022-0260
    The prevalence of lung diseases is increasing year by year and existing drug therapies only provide symptomatic relief rather than targeting the actual cause. Nucleic acids can be used as an alternative therapeutic approach owing to their potential to reform a homeostatic balance by upregulating protective genes or downregulating damaging genes. However, their inherent properties, such as poor stability, ineffective cellular uptake, negative charge and so on, hinder their clinical utility. Such limitations can be overcome by exploiting the functional chemistry of polymeric micelles (PMs) for site-specific delivery, transfection efficiency and improved stability. With this objective, the present work describes the advancements made in designing nucleic acid-based PMs for treating lung diseases followed by approaches requiring consideration for clinical applications.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links