STUDY DESIGN: Literature-based meta-analysis and individual-study-data meta-analysis of diagnostic studies following PRISMA-IPD guidelines.
SETTING & STUDY POPULATIONS: Studies of adults investigating AKI, severe AKI, and AKI-D in the setting of cardiac surgery, intensive care, or emergency department care using either urinary or plasma NGAL measured on clinical laboratory platforms.
SELECTION CRITERIA FOR STUDIES: PubMed, Web of Science, Cochrane Library, Scopus, and congress abstracts ever published through February 2020 reporting diagnostic test studies of NGAL measured on clinical laboratory platforms to predict AKI.
DATA EXTRACTION: Individual-study-data meta-analysis was accomplished by giving authors data specifications tailored to their studies and requesting standardized patient-level data analysis.
ANALYTICAL APPROACH: Individual-study-data meta-analysis used a bivariate time-to-event model for interval-censored data from which discriminative ability (AUC) was characterized. NGAL cutoff concentrations at 95% sensitivity, 95% specificity, and optimal sensitivity and specificity were also estimated. Models incorporated as confounders the clinical setting and use versus nonuse of urine output as a criterion for AKI. A literature-based meta-analysis was also performed for all published studies including those for which the authors were unable to provide individual-study data analyses.
RESULTS: We included 52 observational studies involving 13,040 patients. We analyzed 30 data sets for the individual-study-data meta-analysis. For AKI, severe AKI, and AKI-D, numbers of events were 837, 304, and 103 for analyses of urinary NGAL, respectively; these values were 705, 271, and 178 for analyses of plasma NGAL. Discriminative performance was similar in both meta-analyses. Individual-study-data meta-analysis AUCs for urinary NGAL were 0.75 (95% CI, 0.73-0.76) and 0.80 (95% CI, 0.79-0.81) for severe AKI and AKI-D, respectively; for plasma NGAL, the corresponding AUCs were 0.80 (95% CI, 0.79-0.81) and 0.86 (95% CI, 0.84-0.86). Cutoff concentrations at 95% specificity for urinary NGAL were>580ng/mL with 27% sensitivity for severe AKI and>589ng/mL with 24% sensitivity for AKI-D. Corresponding cutoffs for plasma NGAL were>364ng/mL with 44% sensitivity and>546ng/mL with 26% sensitivity, respectively.
LIMITATIONS: Practice variability in initiation of dialysis. Imperfect harmonization of data across studies.
CONCLUSIONS: Urinary and plasma NGAL concentrations may identify patients at high risk for AKI in clinical research and practice. The cutoff concentrations reported in this study require prospective evaluation.
CASE REPORT: In this case series, we report on two cases of WT which had poor response to pre-operative chemotherapy. Both cases underwent surgery after pre-operative chemotherapy and recovery was uneventful during a two-year follow-up.
DISCUSSION: Both patients had chemotherapy prior planned surgery, but had unfortunate poor tumour response. The tumour progressed in size which required a radical nephrectomy. The histology report for the first case had more than 60% blastemal cells remaining despite giving pre-operative chemotherapy with no focal anaplasia. This showed poor response to chemotherapy evidenced by the high number of blastemal cells. The second case was a stromal type WT which is known for poor response and may lead to enhancement of growth and maturation induced by chemotherapy. These were the possible reason of poor response of WT in these two cases.
METHODS: The study comprised 106 chronic kidney disease (CKD) patients and 203 control subjects. Conventional ultrasound was performed to measure the kidney length and cortical thickness. SWE imaging was performed to measure renal parenchymal stiffness. Diagnostic performance of SWE and conventional ultrasound were correlated with serum creatinine, urea levels and eGFR.
RESULTS: Pearson's correlation coefficient revealed a negative correlation between YM measurements and eGFR (r = -0.576, p < 0.0001). Positive correlations between YM measurements and age (r = 0.321, p < 0.05), serum creatinine (r = 0.375, p < 0.0001) and urea (r = 0.287, p < 0.0001) were also observed. The area under the receiver operating characteristic curve for SWE (0.87) was superior to conventional ultrasound alone (0.35-0.37). The cut-off value of less or equal to 4.31 kPa suggested a non-diseased kidney (80.3% sensitivity, 79.5% specificity).
CONCLUSION: SWE was superior to renal length and cortical thickness in detecting CKD. A value of 4.31 kPa or less showed good accuracy in determining whether a kidney was diseased or not. Advances in knowledge: On SWE, CKD patients show greater renal parenchymal stiffness than non-CKD patients. Determining a cut-off value between normal and diseased renal parenchyma may help in early non-invasive detection and management of CKD.
OBJECTIVE: The study aimed to familiarize physicians with the etiopathogenesis, clinical manifestations, evaluation, and management of children with Henoch-Schönlein purpura.
METHODS: A PubMed search was conducted in January 2020 in Clinical Queries using the key terms "Henoch-Schönlein purpura" OR "IgA vasculitis" OR "anaphylactoid purpura". The search strategy included meta-analyses, randomized controlled trials, clinical trials, observational studies, and reviews published within the past 10 years. Only papers published in the English literature were included in this review. This paper is based on, but not limited to, the search results.
RESULTS: Globally, the incidence of HSP is 10 to 20 cases per 100, 000 children per year. Approximately 90% of cases occur in children between 2 and 10 years of age, with a peak incidence at 4 to 7 years. The diagnosis should be based on the finding of palpable purpura in the presence of at least one of the following criteria, namely, diffuse abdominal pain, arthritis or arthralgia, renal involvement (hematuria and/or proteinuria), and a biopsy showing predominant IgA deposition. Most cases are self-limited. The average duration of the disease is 4 weeks. Long-term complications are rare and include persistent hypertension and end-stage kidney disease. Therapy consists of general and supportive measures as well as treatment of the sequelae of the vasculitis. Current evidence does not support the universal treatment of HSP patients with corticosteroids. Oral corticosteroids may be considered for HSP patients with severe gastrointestinal pain and gastrointestinal hemorrhage.
CONCLUSION: Most cases of HSP have an excellent outcome, with renal involvement being the most important prognostic factor in determining morbidity and mortality. Unfortunately, early steroid treatment does not reduce the incidence and severity of nephropathy in children with HSP. In HSP children who have severe nephritis or renal involvement with proteinuria of greater than 3 months, an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker should be considered in addition to corticosteroids to prevent and/or limit secondary glomerular injury.
METHOD: The protocol of this review is registered on PROSPERO(CRD42020190882). A comprehensive literature search was performed on Medline, Embase and Cochrane CENTRAL using MeSH terms and keywords for randomised controlled trials and observational studies on the topic. Risks of biases were assessed using the Cochrane RoB tool and the Newcastle-Ottawa Scale. For localised RCC, immediate surgery [including partial nephrectomy (PN) and radical nephrectomy (RN)] and delayed surgery [including active surveillance (AS) and delayed intervention (DI)] were compared. For metastatic RCC, upfront versus deferred cytoreductive nephrectomy (CN) were compared.
RESULTS: Eleven studies were included for quantitative analysis. Delayed surgery was significantly associated with worse cancer-specific survival (HR 1.67, 95% CI 1.23-2.27, p