METHODS: Male Sprague Dawley rats were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham surgery. Then, PBOCCA rats received ip injections with, either vehicle (control group), the muscarinic receptor agonist oxotremorine (0.1 mg/kg), or the acetylcholinesterase inhibitor physostigmine (0.1 mg/kg). Cognitive functions were evaluated using a passive avoidance task and the Morris water maze test. In addition, hippocampal LTP was recorded in vivo under anaesthesia.
RESULTS: The PBOCCA rats exhibited significant deficits in passive avoidance retention and spatial learning and memory tests. They also showed a suppression of LTP formation in the hippocampus. Oxotremorine and physostigmine significantly improved the learning and memory deficits as well as the suppression of LTP in PBOCCA rats.
CONCLUSIONS: The present data suggest that the cholinergic system plays an important role in CCH-induced cognitive deficits and could be an effective therapeutic target for the treatment of VaD.
METHODS: Sprague Dawley rats were intravitreally injected with ET1. MgAT and TAU were administered as pre-, co-, or posttreatment. Subsequently, the expression of NOS isoforms was detected in retina by immunohistochemistry, retinal nitrotyrosine level was estimated using ELISA, and retinal cell apoptosis was detected by TUNEL staining.
RESULTS: Intravitreal ET1 caused a significant increase in the expressions of nNOS and iNOS while eNOS expression was significantly reduced compared to vehicle treated group. Administration of both MgAT and TAU restored the altered levels of NOS isoform expression, reduced retinal nitrosative stress and retinal cell apoptosis. The effect of MgAT, however, was greater than that of TAU alone.
CONCLUSIONS: MgAT and TAU prevent ET1-induced retinal cell apoptosis by reducing retinal nitrosative stress in Sprague Dawley rats. Addition of TAU to Mg seems to enhance the efficacy of TAU compared to when given alone. Moreover, the pretreatment with MgAT/TAU showed higher efficacy compared to co- or posttreatment.
OBJECTIVES: To investigate the anti-atherosclerotic activity of a C. nutans leaf methanol extract (CNME) in a type 2 diabetic (T2D) rat model induced by a high-fat diet (HFD) and low-dose streptozotocin.
MATERIALS AND METHODS: Sixty male Sprague-Dawley rats were divided into five groups: non-diabetic fed a standard diet (C), C + CNME (500 mg/kg, orally), diabetic fed an HFD (DM), DM + CNME (500 mg/kg), and DM + Metformin (DM + Met; 300 mg/kg). Treatment with oral CNME and metformin was administered for 4 weeks. Fasting blood glucose (FBG), serum lipid profile, atherogenic index (AI), aortic tissue superoxide dismutase levels (SOD), malondialdehyde (MDA), and tumour necrosis factor-alpha (TNF-α) were measured. The rats' aortas were stained for histological analysis and intima-media thickness (IMT), a marker of subclinical atherosclerosis.
RESULTS: The CNME-treated diabetic rats had reduced serum total cholesterol (43.74%; p = 0.0031), triglycerides (80.91%; p = 0.0003), low-density lipoprotein cholesterol (56.64%; p = 0.0008), AI (51.32%; p
METHODS: Memory deficiency was produced by AlCl3 (100 mg/kg; p.o.) in experimental animals. Learning and memory activity was measured using Morris water maze (MWM) test model. Central cholinergic activity was evaluated through the measurement of brain acetylcholinesterase (AChE) activity. In addition to the above, oxidative stress was determined through assessment of brain thiobarbituric acid-reactive species (TBARS) and glutathione (GSH) levels.
RESULTS: AlCl3 administration prompted significant deficiency of learning and memory in rats, as specified by a noticeable reduction in MWM presentation. AlCl3 administration also produced a significant deterioration in brain AChE action and brain oxidative stress (increase in TBARS and decrease in GSH) levels. Treatment with morusin (5.0 and 10.0 mg/kg, dose orally) significantly overturned AlCl3- induced learning and memory shortages along with diminution of AlCl3-induced rise in brain AChE activity and brain oxidative stress levels.
CONCLUSION: It may be concluded that morusin exerts a memory-preservative outcome in mental discrepancies of rats feasibly through its various activities.