METHODS: A systematic review of randomized controlled trials (RCTs) was undertaken using the PRISMA guidelines to investigate the postoperative impact on diabetes resolution following LVSG versus LRYGB.
RESULTS: Seven RCTs involving a total of 732 patients (LVSG n = 365, LRYGB n = 367) met inclusion criteria. Significant diabetes resolution or improvement was reported with both procedures across all time points. Similarly, measures of glycemic control (HbA1C and fasting blood glucose levels) improved with both procedures, with earlier improvements noted in LRYGB that stabilized and did not differ from LVSG at 12 months postoperatively. Early improvements in measures of insulin resistance in both procedures were also noted in the studies that investigated this.
CONCLUSIONS: This systematic review of RCTs suggests that both LVSG and LRYGB are effective in resolving or improving preoperative type 2 diabetes in obese patients during the reported 3- to 5-year follow-up periods. However, further studies are required before longer-term outcomes can be elucidated. Areas identified that need to be addressed for future studies on this topic include longer follow-up periods, standardized definitions and time point for reporting, and financial analysis of outcomes obtained between surgical procedures to better inform procedure selection.
BACKGROUND: Echocardiography is pivotal in the diagnosis of pericardial effusion and tamponade physiology. Ultrasound guidance for pericardiocentesis is currently considered the standard of care. Several approaches have been described recently, which differ mainly on the site of puncture (subxiphoid, apical, or parasternal). Although they share the use of low-frequency probes, there is absence of complete control of needle trajectory and real-time needle visualization. An in-plane and real-time technique has only been described anecdotally.
METHODS AND RESULTS: A retrospective analysis of 11 patients (63% men, mean age: 37.7±21.2 years) presenting with cardiac tamponade admitted to the tertiary-care emergency department and treated with parasternal medial-to-lateral in-plane pericardiocentesis was carried out. The underlying causes of cardiac tamponade were different among the population. All the pericardiocentesis were successfully performed in the emergency department, without complications, relieving the hemodynamic instability. The mean time taken to perform the eight-step procedure was 309±76.4 s, with no procedure-related complications.
CONCLUSION: The parasternal medial-to-lateral in-plane pericardiocentesis is a new technique theoretically free of complications and it enables real-time monitoring of needle trajectory. For the first time, a pericardiocentesis approach with a medial-to-lateral needle trajectory and real-time, in-plane, needle visualization was performed in a tamponade patient population.
MATERIALS AND METHODS: Sixteen individuals with a range of oral potentially malignant disorders (OPMD) and normal oral mucosa were included. Five areas of the oral cavity were photographed by three dentists using mobile phone cameras with 5 MP-13 MP resolutions. On the same day, the patients were given COE by two oral medicine specialists (OMS) and 3 weeks later, they reviewed the images taken using the phone, and concordance was examined between the two by Kappa statistics. The sensitivity and specificity of clinical diagnosis using the phone images were also measured. Pre- and post-program questionnaires were answered by both the dentists and the OMS to determine the feasibility of integrating teledentistry in their clinical practice.
RESULTS: The Kappa values in determining the presence of lesion, category of lesion (OPMD or not), and making referral decision were moderate to strong (0.64-1.00). The overall sensitivity was more than 70% and specificity was 100%. The false negative rate decreased as the camera resolution increased. All dentists agreed that the process could facilitate early detection of oral mucosal lesion, and was easy to use in the clinic.
CONCLUSIONS: This study provides evidence that teledentistry can be used for communication between primary care and OMS and could be readily integrated into clinical setting for patient management.
METHODS: Databases (MEDLINE via PubMed; EMBASE; Cochrane Central Register of Controlled Trials and Cochrane Oral Health Group Trials Register databases) were searched from 1980 up to and including July 2016. The addressed PICO question was: "What effect does aPDT and/or LT as an adjunct to SRP have on the GCF inflammatory proteins in periodontal disease patients?"
RESULTS: Eight studies used aPDT while 10 studies used laser alone. Eight cytokines including tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, IL-8, IL-10, interferon gamma (IFN-γ), matrix metalloproteinase (MMP)-8 and granulocyte colony-stimulating factor (GM-CSF) were eligible for qualitative analysis for aPDT and LT studies. Four aPDT studies showed significant reduction in IL-1β while one study showed significant reduction in TNF-α levels after aPDT application at follow-up. One study showed significant reduction of IFN-γ, IL-8 and GM-CSF levels after aPDT at follow-up. IL-1β significantly reduced in 4 LT studies, while one study showed significant decrease for IL-6 and TIMP-1 levels. MMP-8 and TNF-α showed significant reduction in three and one study respectively.
CONCLUSION: It remains debatable whether adjunctive aPDT or LT is effective in the reduction of GCF inflammatory proteins in periodontal disease due to non-standard laser parameters and short follow up period. These findings should be considered preliminary and further studies with long-term follow up and standardized laser parameters are recommended.
DESIGN AND METHODS: The activity of DPD was measured using 5-[2- (14)C]Fluorouracil (5-[2-(14)C]FUra) followed by separation of substrate and product 5-[2-(14)C]FUraH(2) with a 15 x 4.6 mm I.D., 5 microm particle size (d(p)) porous graphitic carbon (PGC) column (Hypercarb(R)) and HPLC with online detection of the radioactivity. This was standardized using the protein concentration of the cytosol (NanoOrange(R) Protein Quantitation).
RESULTS: Complete baseline separation of 5-[2-(14)C]Fluorouracil (5-[2-(14)C]FUra) and 5-[2-(14)C]Fluoro-5,6-dihydrouracil (5-[2-(14)C]FUraH(2)) was achieved using a porous graphitic carbon (PGC) column. The detection limit for 5-[2-(14)C]FUraH(2) was 0.4 pmol.
CONCLUSIONS: By using linear gradient separation (0.1% Trifluoroacetic acid [TFA] in water to 100% Methanol) protocols in concert with PGC columns (Hypercarb(R)), we have demonstrated that a PGC column has a distinct advantage over C-18 reverse phase columns in terms of column stability (pH 1-14). This method provides an improvement on the specific assay for DPD enzyme activity. It is rapid, reproducible and sensitive and can be used for routine screening for healthy and cancer patients for partial and profound DPD deficiency before treatment with 5- FUra.