Erythromycin A and roxithromycin are clinically important macrolide antibiotics that selectively act on the bacterial 50S large ribosomal subunit to inhibit bacteria's protein elongation process by blocking the exit tunnel for the nascent peptide away from ribosome. The detailed molecular mechanism of macrolide binding is yet to be elucidated as it is currently known to the most general idea only. In this study, molecular dynamics (MD) simulation was employed to study their interaction at the molecular level, and the binding free energies for both systems were calculated using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The calculated binding free energies for both systems were slightly overestimated compared to the experimental values, but individual energy terms enabled better understanding in the binding for both systems. Decomposition of results into residue basis was able to show the contribution of each residue at the binding pocket toward the binding affinity of macrolides and hence identified several key interacting residues that were in agreement with previous experimental and computational data. Results also indicated the contributions from van der Waals are more important and significant than electrostatic contribution in the binding of macrolides to the binding pocket. The findings from this study are expected to contribute to the understanding of a detailed mechanism of action in a quantitative matter and thus assisting in the development of a safer macrolide antibiotic.
The aim of this study is to assess tissue and serum prostate-specific antigen (PSA) in breast lesions; to compare tissue PSA with serum PSA; to compare tissue PSA in benign and malignant lesions and to compare PSA with known prognostic factors in breast carcinoma. Tissue PSA immunoreactivity in twenty women with breast carcinoma was compared with PSA in twenty-three women with benign breast lesions. Tissue PSA was also compared with known prognostic indicators such as tumour size, axillary nodal status, histological type, histological grade, oestrogen receptor status, progesterone receptor status and c-erbB-2 oncoprotein over-expression. Serum free PSAlevels from these women were measured pre- and post-operatively and an attempt was made to correlate serum PSA with tissue PSA expression. 40% and 43% of malignant and benign breast lesions respectively showed tissue PSA immunoreactivity. No significant difference was observed in the tissue PSA expression between these two groups as also between tissue PSA and known prognostic indicators. As serum PSA levels were below the detection limit (< 0.004 ng/ml) in all except two benign cases, no statistical evaluation was done for the latter. Tissue PSA expression did not correlate with other prognostic markers and detectable serum PSA levels were present in too few cases for statistical analysis. Although no definitive conclusion is possible in this preliminary study regarding the role of PSA in breast disease, it stimulates interest in further research in this direction.
Matched MeSH terms: Breast Diseases/metabolism*; Breast Neoplasms/metabolism*; Receptors, Estrogen/metabolism; Receptors, Progesterone/metabolism; Receptor, ErbB-2/metabolism
Melatonin is a phylogenetically well-preserved molecule with diverse physiological functions. In addition to its well-known regulatory control of the sleep/wake cycle, as well as circadian rhythms generally, melatonin is involved in immunomodulation, hematopoiesis, and antioxidative processes. Recent human and animal studies have now shown that melatonin also has important oncostatic properties. Both at physiological and pharmacological doses melatonin exerts growth inhibitory effects on breast cancer cell lines. In hepatomas, through its activation of MT1 and MT2 receptors, melatonin inhibits linoleic acid uptake, thereby preventing the formation of the mitogenic metabolite 1,3-hydroxyoctadecadienoic acid. In animal model studies, melatonin has been shown to have preventative action against nitrosodiethylamine (NDEA)-induced liver cancer. Melatonin also inhibits the growth of prostate tumors via activation of MT1 receptors thereby inducing translocation of the androgen receptor to the cytoplasm and inhibition of the effect of endogenous androgens. There is abundant evidence indicating that melatonin is involved in preventing tumor initiation, promotion, and progression. The anticarcinogenic effect of melatonin on neoplastic cells relies on its antioxidant, immunostimulating, and apoptotic properties. Melatonin's oncostatic actions include the direct augmentation of natural killer (NK) cell activity, which increases immunosurveillance, as well as the stimulation of cytokine production, for example, of interleukin (IL)-2, IL-6, IL-12, and interferon (IFN)-gamma. In addition to its direct oncostatic action, melatonin protects hematopoietic precursors from the toxic effect of anticancer chemotherapeutic drugs. Melatonin secretion is impaired in patients suffering from breast cancer, endometrial cancer, or colorectal cancer. The increased incidence of breast cancer and colorectal cancer seen in nurses and other night shift workers suggests a possible link between diminished secretion of melatonin and increased exposure to light during nighttime. The physiological surge of melatonin at night is thus considered a "natural restraint" on tumor initiation, promotion, and progression.
A standardized mixture of Chinese herbs, Zemaphyte taken orally as a daily decoction has been shown to be effective in the treatment of atopic eczema. This study showed that Zemaphyte is an efficient antioxidant, being capable of scavenging both superoxide and hydroxyl, and preventing peroxidation of biological membranes. It does not degrade hydrogen peroxide directly, but instead most likely forms a Zemaphyte-hydrogen peroxide complex. The complexed hydrogen peroxide can then be degraded in the presence of catalase to form oxygen and water. It is conceivable that Zemaphyte may contribute to the down-regulation of the activities of cells implicated in atopic eczema through its antioxidant activities.
Macrolides are a group of diverse class of naturally occurring and synthetic antibiotics made of macrocyclic-lactone ring carrying one or more sugar moieties linked to various atoms of the lactone ring. These macrolides selectively bind to a single high affinity site on the prokaryotic 50S ribosomal subunit, making them highly effective towards a wide range of bacterial pathogens. The understanding of binding between macrolides and ribosome serves a good basis in elucidating how they work at the molecular level and these findings would be important in rational drug design. Here, we report refinement of reconstructed PDB structure of erythromycin-ribosome system using molecular dynamics (MD) simulation. Interesting findings were observed in this refinement stage that could improve the understanding of the binding of erythromycin A (ERYA) onto the 50S subunit. The results showed ERYA was highly hydrated and water molecules were found to be important in bridging hydrogen bond at the binding pocket during the simulation time. ERYA binding to ribosome was also strengthened by hydrogen bond network and hydrophobic interactions between the antibiotic and the ribosome. Our MD simulation also demonstrated direct interaction of ERYA with Domains II, V and with C1773 (U1782EC), a residue in Domain IV that has yet been described of its role in ERYA binding. It is hoped that this refinement will serve as a starting model for a further enhancement of our understanding towards the binding of ERYA to ribosome.
The potential of kenaf (Hibiscus cannabinus L.) for phytoremediation of lead (Pb) on sand tailings was investigated. A pot experiment employing factorial design with two main effects of fertilizer and lead was conducted in a nursery using sand tailings from an ex-tin mine as the growing medium. Results showed that Pb was found in the root, stem, and seed capsule of kenaf but not in the leaf. Application of organic fertilizer promoted greater biomass yield as well as higher accumulation capacity of Pb. In Pb-spiked treatments, roots accumulated more than 85% of total plant Pb which implies that kenaf root can be an important sink for bioavailable Pb. Scanning transmission electron microscope (STEM) X-ray microanalysis confirmed that electron-dense deposits located along cell walls of kenaf roots were Pb precipitates. The ability of kenaf to tolerate Pb and avoid phytotoxicity could be attributed to the immobilization of Pb in the roots and hence the restriction of upward movement (translocation factor < 1). With the application of fertilizer, kenaf was also found to have higher biomass and subsequently higher bioaccumulation capacity, indicating its suitability for phytoremediation of Pb-contaminated site.
Hepatocellular carcinoma (HCC) is among the ten most common cancers in Malaysian males. As cellular proliferation is an important feature of malignant transformation, we studied the proliferation pattern of normal and benign perineoplastic liver versus hepatocellular carcinoma in an attempt to further understand the tumour transformation process. 39 HCC (21 with accompanying and 18 without cirrhosis) histologically diagnosed at the Department of Pathology, University of Malaya Medical Centre between January 1992 and December 2003 were immunohistochemically studied using a monoclonal antibody to PCNA (Clone PC10: Dako). 20 livers from cases who had succumbed to traumatic injuries served as normal liver controls (NL). PCNA labeling index (PCNA-LI) was determined by counting the number of immunopositive cells in 1000 contiguous HCC, benign cirrhotic perineoplastic liver (BLC), benign perineoplastic non-cirrhotic (BLNC) and NL cells and conversion to a percentage. The PCNA-LI was also expressed as Ojanguren et al's grades. PCNA was expressed in 10% NL, 38.9% BLNC, 76.2% BLC and 71.8% HCC with BLNC, BLC and HCC showing significantly increased (p < 0.05) number of cases which expressed PCNA compared with NL. The number of BLC which expressed PCNA was also significantly increased compared with BLNC. PCNA-LI ranged from 0-2.0% (mean = 0.2%) in NL, 0-2.0% (mean = 0.3%) in BLNC, 0-3.6% (mean = 0.7%) in BLC and 0-53.8% (mean = 7.6%) in HCC with PCNA-LI significantly increased (p < 0.05) only in HCC compared with BLC, BLNC and NL. Accordingly, all NL, BLC and BLNC showed minimal (<5% cells being immunopositive) immunoreactivity on Ojanguren et al's grading system and only HCC demonstrated immunoreactivity which ranged up to grade 3 (75% of cells). From this study, there appears to be a generally increasing trend of proliferative activity from NL to BLNC to BLC and HCC. Nonetheless, BLNC and BLC, like NL, retained low PCNA-LI and only HCC had a significantly increased PCNA-LI compared with the benign categories. This is probably related to the malignant nature of HCC and may reflect the uncontrolled proliferation of the neoplastic hepatocytes.
We report a case of clear cell "sugar" tumour of the lung (CCTL) occurring in a 26-year-old lady. The patient was asymptomatic and the lesion was picked up in the course of a pre-employment medical examination. A well-defined 5 cm nodule in the right lower lobe was detected on routine chest X-Ray. Microscopical examination of the coin lesion showed clear cells containing abundant diastase-sensitive intracytoplasmic glycogen, as demohstrated with periodic acid-Schiff stains. Tumour immunoreactivity for HMB-45 and non-reactivity for cytokeratin support the histological diagnosis. To our knowledge, this is the first reported case of CCTL in Malaysia.
Sixteen low grade (LSIL), 22 high grade (HSIL) squamous intraepithelial lesions, 28 invasive (13 stage I and 15 stage II-IV) squamous cell carcinoma (SCC) and 15 benign cervices were immunohistochemically studied for involvement of Bcl-2 and Bax proteins in cervical carcinogenesis. 4-microm sections of the cases were immunostained for Bcl-2 (Clone 124: Dako) and Bax (Dako) and staining intensity was rated as 1 (light), 2 (moderate) and 3 (strong) and percentage cellular staining as 0 (negative), 1 (1-25%), 2 (26-50%), 3 (51-75%) and 4 (>75%) with score derived by multiplying staining intensity and percentage positivity. The cut-off value, indicating upregulated expression, was computed as >2 for Bcl-2 and >8 for Bax. Bcl-2 was upregulated (p < 0.05) in HSIL and Bax in SCC when compared with benign cervical squamous epithelium. Bcl-2 expression was confined to the lower third of the epithelium in the benign cervices and LSIL. In HSIL, expression reached the middle and upper thirds. 4 (30.8%) HSIL with upregulated Bcl-2 demonstrated intensification of staining around the basement membrane. SCCs showed "diffuse" (evenly distributed) or "basal" (intensified staining around the periphery of the invading tumour nests) expression of Bcl-2. Of the 5 SCCs with upregulated Bcl-2, 1 of 2 (50%) stage I and 3 (100%) stage II-IV tumours exhibited the "basal" pattern. Benign cervical squamous epithelium, LSIL, HSIL and SCC showed a generally diffuse Bax expression. Thus, Bcl-2 and Bax appeared to be upregulated at different stages of cervical carcinogenesis, Bcl-2 in HSIL and Bax after invasion. Intensification of staining of Bcl-2 at the basement membrane in some HSIL and SCC is interesting and may augur for increased aggressiveness.
MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants.
The discovery of mesenchymal stem cells (MSCs) from a myriad of tissues has triggered the initiative of establishing tailor-made stem cells for disease-specific therapy. Nevertheless, lack of understanding on the inherent differential propensities of these cells may restrict their clinical outcome. Therefore, a comprehensive study was done to compare the proliferation, differentiation, expression of cell surface markers and gene profiling of stem cells isolated from different sources, viz. bone marrow, Wharton's jelly, adipose tissue and dental pulp. We found that although all MSCs were phenotypically similar to each other, Wharton's jelly (WJ) MSCs and dental pulp stem cells (DPSCs) were highly proliferative as compared to bone marrow (BM) MSCs and adipose tissue (AD) MSCs. Moreover, indistinguishable cell surface characteristics and differentiation capacity were confirmed to be similar among all cell types. Based on gene expression profiling, we postulate that BM-MSCs constitutively expressed genes related to inflammation and immunodulation, whereas genes implicated in tissue development were highly expressed in AD-MSCs. Furthermore, the transcriptome profiling of WJ-MSCs and DPSCs revealed an inherent bias towards the neuro-ectoderm lineage. Based on our findings, we believe that there is no unique master mesenchymal stem cell that is appropriate to treat all target diseases. More precisely, MSCs from different sources exhibit distinct and unique gene expression signatures that make them competent to give rise to specific lineages rather than others. Therefore, stem cells should be subjected to rigorous characterization and utmost vigilance needs to be adopted in order to choose the best cellular source for a particular disease.
This study examined the effects of bovine colostrum on exercise -induced modulation of antioxidant parameters in skeletal muscle in mice. Adult male BALB/c mice were randomly divided into four groups (control, colostrum alone, exercise and exercise with colostrum) and each group had three subgroups (day 0, 21 and 42). Colostrum groups of mice were given a daily oral supplement of 50 mg/kg body weight of bovine colostrum and the exercise group of mice were made to exercise on the treadmill for 30 minutes per day. Total antioxidants, lipid hydroperoxides, xanthine oxidase and super oxide dismutase level was assayed from the homogenate of hind limb skeletal muscle.
In the present study, the performances of conventional purification methods, packed bed adsorption (PBA), and expanded bed adsorption (EBA) for the purification of the nucleocapsid protein (NP) of Newcastle disease virus (NDV) from Escherichia coli homogenates were evaluated. The conventional methods for the recovery of NP proteins involved multiple steps, such as centrifugation, precipitation, dialysis, and sucrose gradient ultracentrifugation. For the PBA, clarified feedstock was used for column loading, while in EBA, unclarified feedstock was used. Streamline chelating immobilized with Ni2+ ion was used as an affinity ligand for both PBA and EBA. The final protein yield obtained in conventional and PBA methods was 1.26% and 5.56%, respectively. It was demonstrated that EBA achieved the highest final protein yield of 9.6% with a purification factor of 7. Additionally, the total processing time of the EBA process has been shortened by 8 times compared to that of the conventional method.
More than half of the world's adults carry Helicobacter pylori. The eradication of H. pylori may affect the regulation of human metabolic hormones. The aim of this study was to evaluate the effect of H. pylori eradication on meal-associated changes in appetite-controlled insulinotropic and digestive hormones, and to assess post-eradication changes in body mass index as part of a currently on-going multicentre ESSAY (Eradication Study in Stable Adults/Youths) study.
Heart failure is a major killer worldwide. Atrioventricular conduction block is common in heart failure; it is associated with worse outcomes and can lead to syncope and bradycardic death. We examine the effect of heart failure on anatomical and ion channel remodelling in the rabbit atrioventricular junction (AVJ). Heart failure was induced in New Zealand rabbits by disruption of the aortic valve and banding of the abdominal aorta resulting in volume and pressure overload. Laser micro-dissection and real-time polymerase chain reaction (RT-PCR) were employed to investigate the effects of heart failure on ion channel remodelling in four regions of the rabbit AVJ and in septal tissues. Investigation of the AVJ anatomy was performed using micro-computed tomography (micro-CT). Heart failure animals developed first degree heart block. Heart failure caused ventricular myocardial volume increase with a 35% elongation of the AVJ. There was downregulation of HCN1 and Cx43 mRNA transcripts across all regions and downregulation of Cav1.3 in the transitional tissue. Cx40 mRNA was significantly downregulated in the atrial septum and AVJ tissues but not in the ventricular septum. mRNA abundance for ANP, CLCN2 and Navβ1 was increased with heart failure; Nav1.1 was increased in the inferior nodal extension/compact node area. Heart failure in the rabbit leads to prolongation of the PR interval and this is accompanied by downregulation of HCN1, Cav1.3, Cx40 and Cx43 mRNAs and anatomical enlargement of the entire heart and AVJ.
Temperature is one of the key factors in limiting the distribution of plants and controlling major metabolic processes. A series of simulated reciprocal transplant experiments were performed to investigate the effect of temperature on plant chemical composition. Polygonum minus of different lowland and highland origin were grown under a controlled environment with different temperature regimes to study the effects on secondary metabolites. We applied gas chromatography-mass spectrometry and liquid chromatography time-of-flight mass spectrometry to identify the chemical compounds. A total of 37 volatile organic compounds and 85 flavonoids were detected, with the largest response observed in the compositional changes of aldehydes and terpenes in highland plants under higher temperature treatment. Significantly less anthocyanidin compounds and larger amounts of flavonols were detected under higher temperature treatment. We also studied natural variation in the different plant populations growing under the same environment and identified compounds unique to each population through metabolite fingerprinting. This study shows that the origin of different plant populations influences the effects of temperature on chemical composition.
Despite the potential of vegetable oils as aquafeed ingredients, a major drawback associated with their utilization is the inferior level of beneficial n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Echium oil (EO), which is rich in stearidonic acid (SDA, 18:4n-3), could potentially improve the deposition of n-3 LC-PUFA as the biosynthesis of LC-PUFA is enhanced through bypassing the rate-limiting ∆6 desaturation step. We report for the first time an attempt to investigate whether the presence of a desaturase (Fads2) capable of ∆4 desaturation activities and an elongase (Elovl5) will leverage the provision of dietary SDA to produce a higher rate of LC-PUFA bioconversion. Experimental diets were designed containing fish oil (FO), EO or linseed oil (LO) (100FO, 100EO, 100LO), and diets which comprised equal mixtures of the designated oils (50EOFO and 50EOLO) were evaluated in a 12-week feeding trial involving striped snakeheads (Channa striata). There was no significant difference in growth and feed conversion efficiency. The hepatic fatty acid composition and higher expression of fads2 and elovl5 genes in fish fed EO-based diets indicate the utilization of dietary SDA for LC-PUFA biosynthesis. Collectively, this resulted in a higher deposition of muscle eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) compared to LO-based diets. Dietary EO improved the ratio of n-3 LC-PUFA to n-6 LC-PUFA in fish muscle, which is desirable for human populations with excessive consumption of n-6 PUFA. This study validates the contribution of SDA in improving the content of n-3 LC-PUFA and the ratio of EPA to arachidonic acid (ARA, 20:4n-6) in a freshwater carnivorous species.
Two new bicyclogermacrenes, capgermacrenes A (1) and B (2), were isolated with two known compounds, palustrol (3) and litseagermacrane (4), from a population of Bornean soft coral Capnella sp. The structures of these metabolites were elucidated based on spectroscopic data. Compound 1 was found to inhibit the accumulation of the LPS-induced pro-inflammatory IL-1b and NO production by down-regulating the expression of iNOS protein in RAW 264.7 macrophages.
Flexirubins are the unique type of bacterial pigments produced by the bacteria from the genus Chryseobacterium, which are used in the treatment of chronic skin disease, eczema etc. and may serve as a chemotaxonomic marker. Chryseobacterium artocarpi CECT 8497, an yellowish-orange pigment producing strain was investigated for maximum production of pigment by optimizing medium composition employing response surface methodology (RSM). Culture conditions affecting pigment production were optimized statistically in shake flask experiments. Lactose, l-tryptophan and KH2PO4 were the most significant variables affecting pigment production. Box Behnken design (BBD) and RSM analysis were adopted to investigate the interactions between variables and determine the optimal values for maximum pigment production. Evaluation of the experimental results signified that the optimum conditions for maximum production of pigment (521.64 mg/L) in 50 L bioreactor were lactose 11.25 g/L, l-tryptophan 6 g/L and KH2PO4 650 ppm. Production under optimized conditions increased to 7.23 fold comparing to its production prior to optimization. Results of this study showed that statistical optimization of medium composition and their interaction effects enable short listing of the significant factors influencing maximum pigment production from Chryseobacterium artocarpi CECT 8497. In addition, this is the first report optimizing the process parameters for flexirubin type pigment production from Chryseobacterium artocarpi CECT 8497.
Testosterone has been reported to cause a decrease in uterine fluid volume in which this could involve the aquaporins (AQPs). This study aimed to investigate effect of testosterone on uterine AQP-1, 5, and 7 expressions in order to explain the reported reduction in uterine fluid volume under testosterone influence. Ovariectomized adult female rats received peanut oil, testosterone (1 mg/kg/day), estrogen (0.2 µg/kg/day), or combined estrogen plus testosterone for three consecutive days. Other groups received 3 days estrogen followed by 2 days either peanut oil or testosterone with or without flutamide or finasteride. A day after last injection, uteri were harvested, and the levels of AQP-1, 5, and 7 messenger RNA (mRNA) in uterine tissue homogenates were analyzed by real-time PCR (qPCR). Distributions of AQP-1, 5, and 7 proteins in uterus were observed by immunofluorescence. Levels of AQP-1 mRNA were elevated in rats receiving either estrogen or testosterone-only treatment; however, levels of AQP-5 and 7 mRNAs were elevated in rats receiving testosterone-only treatment. In rats pre-treated with estrogen, testosterone treatment resulted in higher AQP-1, 5, and 7 mRNA levels compared to vehicle treatment. Testosterone effects were antagonized by flutamide but not finasteride. Immunofluorescence study showed that AQP-1 was highly distributed in uterine lumenal epithelium following estrogen or testosterone-only treatment. However, AQP-5 and 7 distributions were high in uterine lumenal epithelium following testosterone-only treatment. Testosterone-induced up-regulation of AQP-1, 5, and 7 expressions in uterus could explain the observed reduction in uterine fluid volume as reported under this condition.