RECENT FINDINGS: Genetic testing for familial hypercholesterolaemia is valuable to enhance diagnostic precision, cascade testing, risk prediction and the use of new medications. Hypertriglyceridaemia may be caused by rare recessive monogenic, or by polygenic, gene variants; genetic testing may be useful in the former, for which antisense therapy targeting apoC-III has been approved. Familial high-density lipoprotein deficiency is caused by specific genetic mutations, but there is no effective therapy. Familial combined hyperlipidaemia (FCHL) is caused by polygenic variants for which there is no specific gene testing panel. Familial dysbetalipoproteinaemia is less frequent and commonly caused by APOE ε2ε2 homozygosity; as with FCHL, it is responsive to lifestyle modifications and statins or/and fibrates. Elevated lipoprotein(a) is a quantitative genetic trait whose value in risk prediction over-rides genetic testing; treatment relies on RNA therapeutics.
SUMMARY: Genetic testing is not at present commonly available for managing dyslipidaemias. Rapidly advancing technology may presage wider use, but its worth will require demonstration of cost-effectiveness and a healthcare workforce trained in genomic medicine.
RESULT: The recipient transconjugants were resistant to erythromycin, cefpodoxime and were mecA positive. PCR amplification of mecA after mix culture plating on Luria Bertani agar containing 100 μg/mL showed that 75% of the donor and 58.3% of the recipient transconjugants were mecA positive. Additionally, 61.5% of both the donor cells and recipient transconjugants were mecA positive, while 46.2% and 41.75% of both donor and recipient transconjugants were mecA positive on LB agar containing 50 μg/mL and 30 μg/mL respectively.
CONCLUSION: In this study, the direction of transfer of phenotypic resistance as well as mecA was observed to have occurred from the donor to the recipient strains. This study affirmed the importance of horizontal transfer events in the dissemination of antibiotics resistance among different strains of MRSA.