Displaying publications 161 - 180 of 225 in total

Abstract:
Sort:
  1. Lin J, Shen C, Cheng Y, Lai OM, Tan CP, Panpipat W, et al.
    PMID: 39052986 DOI: 10.1021/acsami.4c05208
    The stimulus-responsive regulation of enzyme catalytic activity and selectivity provides a new opportunity to extend the functionality and efficiency of immobilized enzymes. This work aims to design and synthesize a thermo-switchable enzyme@MOF for size-selective biocatalysis and biosensing through the immobilization of Candida rugosa lipase (CRL) within ZIF-8 functionalized with thermally responsive polymer, poly(N-isopropylacrylamide) (PNIPAM) (CRL@ZIF-8-PNIPAM). Unlike free CRL, which does not demonstrate substrate selectivity, we can reversibly tune the pore size of the ZIF-8-PNIPAM nanostructures (open pores or blocked pores) through temperature stimulus and subsequently modulate the substrate selectivity of CRL@ZIF-8-PNIPAM. CRL@ZIF-8-PNIPAM had the highest hydrolytic activity for small molecules (12 mM p-nitrophenol/mg protein/min, 4-nitrophenyl butyrate (p-NP Be)) and the lowest hydrolytic activity for large molecules (0.16 mM p-nitrophenol/mg protein/min, 4-nitrophenyl palmitate (p-NP P)). In addition, CRL@ZIF-8-PNIPAM demonstrated thermo-switchable behavior for large molecules (p-NP P). The p-NP P hydrolytic activity of CRL@ZIF-8-PNIPAM was significantly lower at 40 °C (blocked pores) than at 27 °C (open pores). However, the transition of blocked pores and open pores is a gradual process that resulted in a delay in the "thermo-switchable" catalytic behavior of CRL@ZIF-8-PNIPAM during thermal cycling. CRL@ZIF-8-PNIPAM was also successfully used for the fabrication of electrochemical biosensors for the selective biosensing of pesticides with different molecular sizes.
  2. Gholivand S, Tan TB, Yusoff MM, Qoms MS, Wang Y, Liu Y, et al.
    Food Chem, 2025 Jan 15;463(Pt 4):141515.
    PMID: 39395350 DOI: 10.1016/j.foodchem.2024.141515
    In this study, supercritical carbon dioxide solution-enhanced dispersion (SEDS) was used to encapsulate hemp seed oil (HSO) within matrices of hemp seed protein isolate (HPI), pea protein (PPI) and soy protein (SPI) (0.5 % w/v) in complex with alginate (AL) (0.01 % w/v). The effects of different pH levels (3-9), NaCl concentrations (0-200 mmol/L) and simulated gastrointestinal conditions on HSO release and digestion patterns were analyzed. The findings revealed that SPI/AL microcapsules effectively maintained structural integrity and controlled oil release across diverse pH levels and salt concentrations. During gastrointestinal phases, minimal oil release was observed during oral digestion (<25 % for all samples), while significant (P 
  3. Jayson T, Bakibillah ASM, Tan CP, Kamal MAS, Monn V, Imura JI
    J Environ Manage, 2024 Sep;368:122245.
    PMID: 39173300 DOI: 10.1016/j.jenvman.2024.122245
    Electric vehicles (EVs), which are a great substitute for gasoline-powered vehicles, have the potential to achieve the goal of reducing energy consumption and emissions. However, the energy consumption of an EV is highly dependent on road contexts and driving behavior, especially at urban intersections. This paper proposes a novel ecological (eco) driving strategy (EDS) for EVs based on optimal energy consumption at an urban signalized intersection under moderate and dense traffic conditions. Firstly, we develop an energy consumption model for EVs considering several crucial factors such as road grade, curvature, rolling resistance, friction in bearing, aerodynamics resistance, motor ohmic loss, and regenerative braking. For better energy recovery at varying traffic speeds, we employ a sigmoid function to calculate the regenerative braking efficiency rather than a simple constant or linear function considered by many other studies. Secondly, we formulate an eco-driving optimal control problem subject to state constraints that minimize the energy consumption of EVs by finding a closed-form solution for acceleration/deceleration of vehicles over a time and distance horizon using Pontryagin's minimum principle (PMP). Finally, we evaluate the efficacy of the proposed EDS using microscopic traffic simulations considering real traffic flow behavior at an urban signalized intersection and compare its performance to the (human-based) traditional driving strategy (TDS). The results demonstrate significant performance improvement in energy efficiency and waiting time for various traffic demands while ensuring driving safety and riding comfort. Our proposed strategy has a low computing cost and can be used as an advanced driver-assistance system (ADAS) in real-time.
  4. Ke W, Lee YY, Tan CP, Li A, Zhang Y, Wang Y, et al.
    Food Chem, 2025 Feb 01;464(Pt 2):141722.
    PMID: 39442221 DOI: 10.1016/j.foodchem.2024.141722
    Diacylglycerol (DAG) is a novel functional structural lipid, but its application in base oils remains underexplored. This research investigated the effect of three liquid oils (groundnut oil, corn oil, and flaxseed oil), with varying polyunsaturated fatty acid (PUFA) (39.60, 69.50, and 77.65 %) and DAG content (0.00, 40.00, 80.00 %), on the crystallization behaviors of palm-based oil. DAG (40.00 %), obtained through enzymatic glycerolysis and molecular distillation, was found to stabilize the binary system with good compatibility and fine crystal structure. "Liquid" DAG played a dual role: diluting solid lipids, and promoting crystallization. Increasing DAG content led to larger crystalline domain size, while higher PUFA content accelerated crystallization and increased crystal orderliness, though decreasing crystal density. These results demonstrated the clear influence of PUFA and DAG content on palm-based oil crystallization. This knowledge can guide the utilization of different unsaturated DAGs for tailored fat crystallization in food application.
  5. Chen C, Alfredo YY, Lee YY, Tan CP, Wang Y, Qiu C
    Int J Biol Macromol, 2024 Nov;281(Pt 1):136223.
    PMID: 39366617 DOI: 10.1016/j.ijbiomac.2024.136223
    Diacylglycerol-based nanoparticles are promising bioactive delivery systems. However, limited understanding of their interaction with biological entities restricts their clinical use. This study investigated the protein corona formed on medium and long chain diacylglycerol (MLCD)-based solid lipid nanoparticles (NPs) modified by Polyoxethylene stearate (PEG) and compared to glyceryl tristearate (TG) and cetyl palmitate (CP) nanoparticles. Bovine serum albumin (BSA) formed corona with MLCD NPs through hydrophobic interactions and hydrogen bonding, contributing to a decrease in α-helix, an increase in β-sheet and a change in the microenvironment of Tyr residues. Owing to higher lipid hydrophilicity, MLCD NPs showed a much lower affinity for BSA than TG and CP NPs, and the binding constant with BSA was increased for larger NPs. PEG modification and the protein corona reduced the uptake of NPs by macrophages but exerted little influence on B16 cell. Among the NPs with different lipid core, the MLCD NPs showed a lower macrophages cell uptake but higher B16 cell uptake, suggesting a longer circulation time in blood but higher cancer cell internalization. This work shed light on the interactions between MLCD NPs and proteins, which is significant for application as nanocarriers with improved biological efficacy.
  6. Choo KY, Kho C, Ong YY, Thoo YY, Lim RLH, Tan CP, et al.
    Food Sci Biotechnol, 2018 Oct;27(5):1411-1417.
    PMID: 30319851 DOI: 10.1007/s10068-018-0367-4
    The objective of this work was to study the effect of storage temperatures and duration on the stability of fermented red dragon fruit drink (FRDFD) on its betacyanins content, physicochemical and microbiological qualities (BPM) and determining sensory acceptability. Results showed that both storage temperatures and duration have a significant effect on betacyanins content and physicochemical properties of FRDFD. Aerobic mesophilic and yeast and mold counts were lower than 1 × 103 CFU/mL for FRDFD stored at both temperatures. The loss of betanin (16.53-13.93 g/L) at 4 °C was 15.73% with no significant changes in physicochemical properties from week two onwards compared to 56.32% (16.53-7.22 g/L) of betanin loss at 25 °C. At week eight, FRDFD stored at 4 °C still contained 13.93 g/L betanin with a pH value of 3.46, suggested its potential as a functional drink which is sensory acceptable (mean score > 80% using hedonic test) among consumers.
  7. Jia XZ, Yao QB, Zhang B, Tan CP, Zeng XA, Huang YY, et al.
    Foods, 2023 Nov 16;12(22).
    PMID: 38002208 DOI: 10.3390/foods12224151
    Novel hierarchical metal-organic framework/chitosan aerogel composites were developed for oil bleaching. UiO-66-COOH-type metal organic frameworks (Zr-MOFs) were synthesized and integrated onto a chitosan matrix with different contents and named MOF-aerogel-1 and MOF-aerogel-2. Due to the compatibility of chitosan, the carboxylic zirconium MOF-aerogels not only maintained the inherent chemical accessibility of UiO-66-COOH, but the unique crystallization and structural characteristics of these MOF nanoparticles were also preserved. Through 3-dimensional reconstructed images, aggregation of the UiO-66-COOH particles was observed in MOF-aerogel-1, while the MOF was homogeneously distributed on the surface of the chitosan lamellae in MOF-aerogel-2. All aerogels, with or without immobilized MOF nanoparticles, were capable of removing carotenoids during oil bleaching. MOF-aerogel-2 showed the most satisfying removal proportions of 26.6%, 36.5%, and 47.2% at 50 °C, 75 °C, and 100 °C, respectively, and its performance was very similar to that of commercial activated clay. The reuse performance of MOF-aerogel-2 was tested, and the results showed its exceptional sustainability for carotenoid removal. These findings suggested the effectiveness of the MOFaerogel for potential utilization in oil bleaching treatments.
  8. Lim TW, Choo KY, Lim RLH, Pui LP, Tan CP, Ho CW
    Heliyon, 2023 Nov;9(11):e21940.
    PMID: 38027851 DOI: 10.1016/j.heliyon.2023.e21940
    Red dragon fruit (RDF) is well-known for its high nutritional content, especially the red pigment betacyanins that possess high antioxidant activity. Natural fermentation is an ancient yet outstanding technique that relies on the autochthonous microbiota from fruits and vegetables surfaces to preserve and improve the nutritional values and quality of the food product. The present study was to evaluate and identify the indigenous microbial community (bacteria and fungi) that are involved in the natural fermentation of RDF. Results revealed a total of twenty bacterial pure cultures and nine fungal pure cultures were successfully isolated from fermented red dragon fruit drink (FRDFD). For the first time, the PCR amplification of 16S rRNA and ITS regions and sequence analysis suggested nine genera of bacteria and three genera of fungi (Aureobasidium pullulans, Clavispora opuntiae, and Talaromyces aurantiacus) present in the FRDFD. Four dominant (≥10 % isolates) bacteria species identified from FRDFD were Klebsiella pneumonia, Brevibacillus parabrevis, Bacillus tequilensis and Bacillus subtilis. The carbohydrate fermentation test showed that all the indigenous microbes identified were able to serve as useful starter culture by fermenting sucrose and glucose, thereby producing acid to lower the pH of FRDFD to around pH 4 for better betacyanins stability. The present study provides a more comprehensive understanding of the indigenous microbial community that serves as the starter culture in the fermentation of RDF. Besides, this study provides a useful guide for future research to be conducted on studying the rare bacterial strains (such as B. tequilensis) identified from the FRDFD for their potential bioactivities and applications in medical treatment and functional foods industries.
  9. Yang Z, Cui J, Yun Y, Xu Y, Tan CP, Zhang W
    J Sci Food Agric, 2024 Jan 29.
    PMID: 38284624 DOI: 10.1002/jsfa.13338
    BACKGROUND: The inherent properties of coconut oil (CO), including its elevated saturated fatty acid content and low melting point, make it suitable for application in plastic fat processing. The present study explores the physicochemical characteristics, micromorphology and oxidative stability of oleogels produced from CO using various gelators [ethylcellulose (EC), β-sitosterol/γ-oryzanol (PS) and glyceryl monostearate (MG)] to elucidate the formation mechanisms of coconut oleogels (EC-COO, PS-COO and MG-COO).

    RESULTS: Three oleogel systems exhibited a solid-like behavior, with the formation of crystalline forms dominated by β and β'. Among them, PS-COO exhibited enhanced capability with respect to immobilizing liquid oils, resulting in solidification with high oil-binding capacity, moderate hardness and good elasticity. By contrast, MG-COO demonstrated inferior stability compared to PS-COO and EC-COO. Furthermore, MG-COO and PS-COO demonstrated antioxidant properties against CO oxidation, whereas EC-COO exhibited the opposite effect. PS-COO and EC-COO exhibited superior thermodynamic behavior compared to MG-COO.

    CONCLUSION: Three oleogels based on CO were successfully prepared. The mechanical strength, storage modulus and thermodynamic stability of the CO oleogel exhibited concentration dependence with increasing gelling agent addition. PS-COO demonstrated relatively robust oil-binding capacity and oxidative stability, particularly with a 15% PS addition. This information contributes to a deeper understanding of CO-based oleogels and offers theoretical insights for their application in food products. © 2024 Society of Chemical Industry.

  10. Lei J, He Y, Zhu S, Shi J, Tan CP, Liu Y, et al.
    Analyst, 2024 Jan 29;149(3):751-760.
    PMID: 38194259 DOI: 10.1039/d3an01536j
    Polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), play an important role in the nutritional value of milk lipids. However, a comprehensive analysis of PUFAs and their esters in milk is still scarce. In this study, we developed a novel pseudotargeted lipidomics approach, named SpecLipIDA, for determining PUFA lipids in milk. Triglycerides (TGs) and phospholipids (PLs) were separated using NH2 cartridges, and mass spectrometry data in the information-dependent acquisition (IDA) mode were preprocessed by MS-DIAL, leading to improved identification in subsequent targeted analysis. The target matching algorithm, based on specific lipid cleavage patterns, demonstrated enhanced identification of PUFA lipids compared to the lipid annotations provided by MS-DIAL and GNPS. The approach was applied to identify PUFA lipids in various milk samples, resulting in the detection of a total of 115 PUFA lipids. The results revealed distinct differences in PUFA lipids among different samples, with 44 PUFA lipids significantly contributing to these differences. Our study indicated that SpecLipIDA is an efficient method for rapidly and specifically screening PUFA lipids.
  11. Sapai S, Loo JY, Ding ZY, Tan CP, Baskaran VM, Nurzaman SG
    Soft Robot, 2023 Dec;10(6):1224-1240.
    PMID: 37590485 DOI: 10.1089/soro.2022.0188
    Data-driven methods with deep neural networks demonstrate promising results for accurate modeling in soft robots. However, deep neural network models rely on voluminous data in discovering the complex and nonlinear representations inherent in soft robots. Consequently, while it is not always possible, a substantial amount of effort is required for data acquisition, labeling, and annotation. This article introduces a data-driven learning framework based on synthetic data to circumvent the exhaustive data collection process. More specifically, we propose a novel time series generative adversarial network with a self-attention mechanism, Transformer TimeGAN (TTGAN) to precisely learn the complex dynamics of a soft robot. On top of that, the TTGAN is incorporated with a conditioning network that enables it to produce synthetic data for specific soft robot behaviors. The proposed framework is verified on a widely used pneumatic-based soft gripper as an exemplary experimental setup. Experimental results demonstrate that the TTGAN generates synthetic time series data with realistic soft robot dynamics. Critically, a combination of the synthetic and only partially available original data produces a data-driven model with estimation accuracy comparable to models obtained from using complete original data.
  12. Bakibillah ASM, Kamal MAS, Tan CP, Hayakawa T, Imura JI
    Heliyon, 2024 Jan 15;10(1):e23586.
    PMID: 38173479 DOI: 10.1016/j.heliyon.2023.e23586
    Energy consumption and emissions of a vehicle are highly influenced by road contexts and driving behavior. Especially, driving on horizontal curves often necessitates a driver to brake and accelerate, which causes additional fuel consumption and emissions. This paper proposes a novel optimal ecological (eco) driving scheme (EDS) using nonlinear model predictive control (MPC) considering various road contexts, i.e., curvatures and surface conditions. Firstly, a nonlinear optimization problem is formulated considering a suitable prediction horizon and an objective function based on factors affecting fuel consumption, emissions, and driving safety. Secondly, the EDS dynamically computes the optimal velocity trajectory for the host vehicle considering its dynamics model, the state of the preceding vehicle, and information of road contexts that reduces fuel consumption and carbon emissions. Finally, we analyze the effect of different penetration rates of the EDS on overall traffic performance. The effectiveness of the proposed scheme is demonstrated using microscopic traffic simulations under dense and mixed traffic environment, and it is found that the proposed EDS substantially reduces the fuel consumption and carbon emissions of the host vehicle compared to the traditional (human-based) driving system (TDS), while ensuring driving safety. The proposed scheme can be employed as an advanced driver assistance system (ADAS) for semi-autonomous vehicles.
  13. Wang Y, Zheng Z, Zhang C, Wu C, Tan CP, Liu Y
    Food Res Int, 2024 Feb;177:113852.
    PMID: 38225129 DOI: 10.1016/j.foodres.2023.113852
    Extruded plant proteins, also known as textured vegetable proteins (TVPs), serve as vital components in plant-based meat analogue, yet their structural and nutritional characteristics remain elusive. In this study, we examined the impact of high-moisture (HM) and low-moisture (LM) extrusion on the structures, digestion and absorption of three types of plant proteins. Extrusion transformed plant proteins from spherical to fibrous forms, and formed larger aggregate particles. It also led to the disruption of original disulfide bonds and hydrophobic interactions within protein molecules, and the formation of new cross-links. Intriguingly, compared to native plant proteins, TVPs' α-helix/β-sheet values decreased from 0.68 to 0.69 to 0.56-0.65. Extrusion increased the proportion of peptides shorter than 1 kD in digesta of TVPs by 1.44-23.63%. In comparison to unextruded plant proteins, TVPs exhibited lower content of free amino acids in cell transport products. Our findings demonstrated that extrusion can modify protein secondary structure by diminishing the α-helix/β-sheet value, and impact protein tertiary structure by reducing disulfide bonds and hydrophobic interactions, promoting the digestion and absorption of plant proteins. These insights offer valuable scientific backing for the utilization of extruded plant-based proteins, bolstering their role in enhancing the palatability and nutritional profile of plant-based meat substitutes.
  14. Tangsanthatkun J, Peanparkdee M, Katekhong W, Harnsilawat T, Tan CP, Klinkesorn U
    Foods, 2022 Jan 21;11(3).
    PMID: 35159442 DOI: 10.3390/foods11030291
    Silkworm pupae, a waste product from the silk production industry, can be an alternative source of edible oil, thus reducing the industry's waste. In the present work, frozen silkworm pupae were used as raw material to extract oil via an aqueous saline process. The Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize the extraction process. The extraction conditions with the highest oil yield and a low peroxide value were obtained when using a saline solution concentration of 1.7% w/v, a ratio of aqueous liquid to silkworm pupae of 3.3 mL/g, and a 119 min stirring time at the stirring speed of 100 rpm. Under these conditions, silkworm oil with a yield of 3.32%, peroxide values of approximately 1.55 mM, and an acid value of 0.67 mg KOH/g oil was obtained. The extracted oil contained omega-3 acids (α-linolenic acid), which constituted around 25% of the total fatty acids, with approximate cholesterol levels of 109 mg/100 g oil. The amounts of β-carotene and α-tocopherol were approximately 785 and 9434 μg/100 g oil, respectively. Overall, the results demonstrated that oil extracted from silkworm pupae has good quality parameters and thus can be used as a new valuable source of edible lipids.
  15. Lv Y, Peng X, Lee YY, Xie X, Tan CP, Wang Y, et al.
    Food Res Int, 2024 Oct;194:114900.
    PMID: 39232527 DOI: 10.1016/j.foodres.2024.114900
    Diacylglycerol (DAG) is generally considered one of the precursors of 3-chloropropanol esters (3-MCPDE) and glycidyl esters (GEs). This study aimed to evaluate static heating and stir-frying properties of peanut oil (PO) and PO based 58% and 82% DAG oils (PDAG-58 and PDAG-82). Observations revealed that, phytonutrient levels notably diminished during static heating, with PDAG exhibiting reduced oxidative stability, but maintaining a stability profile similar to PO over a short period. During stir-frying, 3-MCPDE content initially increased and then decreased whereas the opposite was observed for GEs. Furthermore, as temperature, and NaCl concentration increased, there was a corresponding increase in the levels of 3-MCPDE and GEs, although remained within safe limits. When used in suitable concentrations, these findings underscore the potential of DAG, as a nutritionally rich and oxidatively stable alternative to conventional cooking oils, promoting the use of DAG edible oil in heat-cooked food systems.
  16. Sim SM, Azila NM, Lian LH, Tan CP, Tan NH
    Ann Acad Med Singap, 2006 Sep;35(9):634-41.
    PMID: 17051280
    INTRODUCTION: A process-oriented instrument was developed for the summative assessment of student performance during problem-based learning (PBL) tutorials. This study evaluated (1) the acceptability of the instrument by tutors and (2) the consistency of assessment scores by different raters.

    MATERIALS AND METHODS: A survey of the tutors who had used the instrument was conducted to determine whether the assessment instrument or form was user-friendly. The 4 competencies assessed, using a 5-point rating scale, were (1) participation and communication skills, (2) cooperation or team-building skills, (3) comprehension or reasoning skills and (4) knowledge or information-gathering skills. Tutors were given a set of criteria guidelines for scoring the students' performance in these 4 competencies. Tutors were not attached to a particular PBL group, but took turns to facilitate different groups on different case or problem discussions. Assessment scores for one cohort of undergraduate medical students in their respective PBL groups in Year I (2003/2004) and Year II (2004/2005) were analysed. The consistency of scores was analysed using intraclass correlation.

    RESULTS: The majority of the tutors surveyed expressed no difficulty in using the instrument and agreed that it helped them assess the students fairly. Analysis of the scores obtained for the above cohort indicated that the different raters were relatively consistent in their assessment of student performance, despite a small number consistently showing either "strict" or "indiscriminate" rating practice.

    CONCLUSION: The instrument designed for the assessment of student performance in the PBL tutorial classroom setting is user-friendly and is reliable when used judiciously with the criteria guidelines provided.

  17. Cai R, Tan CP, Lai OM, Dang Y, Liu A, Choeng LZ, et al.
    Food Chem, 2025 Mar 15;468:142408.
    PMID: 39674013 DOI: 10.1016/j.foodchem.2024.142408
    Casein (CN) is a common allergen that is challenging to avoid in modern foods. The effect of cold argon plasma (CAP) on reducing CN antigenicity was investigated, focusing on alterations in epitope structure and sequence. CAP mainly contains hydroxyl radicals (∙OH). After a 12-min CAP treatment, the result of ELISA demonstrated an 80.46 % reduction in antigenicity. Transmission electron microscopy and electrophoresis revealed that certain CN aggregated, while multispectral analysis indicated that part of CN was fragmented into smaller peptides. The predictive 3D model suggested the disruption of linear epitopes located in the α-helix region might contribute to the reduced allergenicity. The peptide sequences were compared to the linear epitopes predicted by immunoinformatics approaches, revealing some reduction or breakage of key allergic sequences. Meanwhile, amino acids with aromatic side chains and hydrophobic groups were susceptible to CAP-induced modifications. This investigation demonstrated CAP could be beneficial for processing hypoallergenic foods.
  18. Sun F, Zhang Y, Tan CP, Gu Y, Liu Y, Xu YJ
    Crit Rev Anal Chem, 2025 Feb 13.
    PMID: 39945579 DOI: 10.1080/10408347.2025.2463430
    Microbiomes significantly impact food flavor, food quality and human health. The development of omics technologies has revolutionized our understanding of the microbiome, the generated complex datasets, as well as their processing and interpretation need to be taken seriously. Currently, chemometrics has shown huge potential in omics data analysis, which is crucial to reveal the functional attributes and mechanisms of microbiomes in food nutrition and safety. However, various chemometric tools have their own characteristics, selecting appropriate technologies and performing multiomics data fusion analysis to improve the precision and reliability of food microbial investigations is still a huge challenge. In this review, we summarized the omics technologies used in food microbiome studies, overviewed the principle and applicability of chemometrics in omics, and discussed the challenges and prospects of chemometrics. The urgent need for chemometrics is to integrate deep learning (DL) and artificial intelligence algorithms to enhance its analytical capabilities and prediction accuracy. We hope this review will provide valuable insights of the integration of multiomics and bioinformatics combined with various chemometric techniques in data analysis for food microbial investigation. In the future, chemometrics combined with modern technologies for multiomics data analysis will further deepen our understanding of food microbiology and improve food safety.
  19. Xie P, Xie R, Lai J, Zou S, Lee YY, Tan CP, et al.
    Food Chem, 2025 Feb 12;475:143385.
    PMID: 39952178 DOI: 10.1016/j.foodchem.2025.143385
    Liquid oils are typically used to dilute solid fat in aerated emulsions, yet the structure of lipid components determines their functional properties. This study investigates the mechanism of liquid diacylglycerol (DAG) and triacylglycerol (TAG) on the whipping capabilities of aerated emulsions from the perspective of fat crystal- membrane interactions. Although there were no significant differences in thermodynamic properties, DAG significantly delayed the reduction in lamella thickness of fat crystals compared to TAG, thereby maintaining the density of the fat crystal network at high liquid oil levels. Additionally, the extra hydroxyl group in DAG, compared to TAG, enabled DAG-rich fat globules to occupy the air-liquid interface more rapidly, thereby significantly enhancing the occurrence and development of partial coalescence during whipping. Therefore, the whipping capabilities of aerated emulsions rich in DAG were greatly improved. This study enhances understanding of structural lipids in aerated emulsions and offers new insights into improving whipping capabilities.
  20. Xie P, Lai J, Lee YY, Xie R, He T, Tan CP, et al.
    Food Chem, 2025 Feb 12;475:143390.
    PMID: 39956073 DOI: 10.1016/j.foodchem.2025.143390
    With the development of the new tea drink market and increasing public attention to health, low-saturated fat aerated emulsions are becoming more popular. However, low saturation levels can easily lead to poor whipping capabilities. This study systematically investigated the mechanisms by which multiple enzyme-modified palm olein, used as a low-saturated fat base in aerated emulsions. After enzyme-catalyzed interesterification, fat crystallization properties were significantly enhanced, primarily through the promotion of fat crystal-membrane interaction effects between fat globules, which in turn, improved whipping capabilities. Additionally, it was found that the DAG form of palm olein easily adsorbed casein, resulting in a significant decrease in serum protein concentration, which weakened overrun due to insufficient air encapsulation. However, the whipping time was significantly reduced. Finally, by combining interesterified fats with DAG, the foam properties were greatly improved. This study provides important guidance for the industrial application of interesterified fats and DAG in aerated emulsions.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links