Displaying publications 161 - 180 of 2201 in total

Abstract:
Sort:
  1. Mohamed Ikhtifar Rafi, Cheah, Yoke Kqueen
    MyJurnal
    Bacterial endophytes are found on all types of plants and is a potential source of bioactive compounds which can be utilized to fight against multi-resistant pathogens and could be further develop into new leads for antibiotic development. However, the research done on the bacterial endophytes is relatively new and has potential to grow as it is theorized that each plant has one or more bacterial endophytes inhabiting them. This review aims to review the studies that have been done previously and give new insights on the latest trends in this field of research.
    Matched MeSH terms: Anti-Bacterial Agents
  2. Lahiri D, Nag M, Banerjee R, Mukherjee D, Garai S, Sarkar T, et al.
    PMID: 33987107 DOI: 10.3389/fcimb.2021.660048
    Biofilm is a syntrophic association of sessile groups of microbial cells that adhere to biotic and abiotic surfaces with the help of pili and extracellular polymeric substances (EPS). EPSs also prevent penetration of antimicrobials/antibiotics into the sessile groups of cells. Hence, methods and agents to avoid or remove biofilms are urgently needed. Enzymes play important roles in the removal of biofilm in natural environments and may be promising agents for this purpose. As the major component of the EPS is polysaccharide, amylase has inhibited EPS by preventing the adherence of the microbial cells, thus making amylase a suitable antimicrobial agent. On the other hand, salivary amylase binds to amylase-binding protein of plaque-forming Streptococci and initiates the formation of biofilm. This review investigates the contradictory actions and microbe-associated genes of amylases, with emphasis on their structural and functional characteristics.
    Matched MeSH terms: Anti-Bacterial Agents
  3. Abdullah S, Jang SE, Kwak MK, Chong K
    J Microbiol, 2020 Dec;58(12):1054-1064.
    PMID: 33263896 DOI: 10.1007/s12275-020-0208-z
    Antiplasmodial nortriterpenes with 3,4-seco-27-norlanostane skeletons, almost entirely obtained from fruiting bodies, represent the main evidential source for bioactive secondary metabolites derived from a relatively unexplored phytopathogenic fungus, Ganoderma boninense. Currently lacking is convincing evidence for antimicrobial secondary metabolites in this pathogen, excluding that obtained from commonly observed phytochemicals in the plants. Herein, we aimed to demonstrate an efficient analytical approach for the production of antibacterial secondary metabolites using the mycelial extract of G. boninense. Three experimental cultures were prepared from fruiting bodies (GBFB), mycelium cultured on potato dextrose agar (PDA) media (GBMA), and liquid broth (GBMB). Through solvent extraction, culture type-dependent phytochemical distributions were diversely exhibited. Water-extracted GBMB produced the highest yield (31.21 ± 0.61%, p < 0.05), but both GBFB and GBMA elicited remarkably higher yields than GBMB when polar-organic solvent extraction was employed. Greater quantities of phytochemicals were also obtained from GBFB and GBMA, in sharp contrast to those gleaned from GBMB. However, the highest antibacterial activity was observed in chloroform-extracted GBMA against all tested bacteria. From liquid-liquid extractions (LLE), it was seen that mycelia extraction with combined chloroform-methanol-water at a ratio of 1:1:1 was superior at detecting antibacterial activities with the most significant quantities of antibacterial compounds. The data demonstrate a novel means of assessing antibacterial compounds with mycelia by LLE which avoids the shortcomings of standardized methodologies. Additionally, the antibacterial extract from the mycelia demonstrate that previously unknown bioactive secondary metabolites of the less studied subsets of Ganoderma may serve as active and potent antimicrobial compounds.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  4. Mohd Nazrin Mohd Isa, Nor Azura Ahmad Tarmidzi, Norzalina Ghazali, Nalisha Mohamed Ramli, Ammar Yaseer Abdul Hakim@Abdul Khakin
    MyJurnal
    Antibiotic prophylaxis guidelines for infective endocarditis have been regularly
    revised and modified based on current scientific evidence. These guidelines commonly regarded as
    standard of care and determine the medicolegal standards. The aim of this study was to elicit the
    current practice of prophylaxis antibiotic for Infective endocarditis among general dental
    practitioner in Klang Valley. (Copied from article).
    Matched MeSH terms: Anti-Bacterial Agents
  5. Lee SW, Loo CH, Tan WC
    Med J Malaysia, 2018 10;73(5):338-339.
    PMID: 30350820 MyJurnal
    Confluent and reticulated papillomatosis (CRP) was first described in 1927 by Gougerot and further characterised by Carteud.1 It is relatively rare, and the exact pathophysiology was not well known. Over the years, multiple treatment modalities were proposed. We report our experience with three cases of CRP which showed complete clearance with tetracycline group of antibiotics.
    Matched MeSH terms: Anti-Bacterial Agents
  6. Dougall D, Abraham EP
    Nature, 1955;176:256.
    DOI: 10.1038/176256a0
    WHILE studying the antibacterial products of a species of Streptomyces (N.C.I.B. 8697) sent by Dr. R. Green from Malaya, we have isolated an orange-red coloured basic substance which is very active against a variety of bacteria and is highly toxic to mice. The antibiotic was extracted from the culture fluid into chloroform, at pH 6, and re-extracted into water at pH 2, or extracted into trichloroethylene, at pH 8.5, and re-extracted into water at pH 3.5. It was purified by counter-current distribution in a solvent system consisting of trichloroethylene and 0.1 M sodium citrate buffer, pH. 5.95. In this system its partition coefficient, K (Combining double low line concentration in trichloroethylene/concentration in water), was 0.98. The purified product yielded a crystalline hydrochloride, reineckate and picrate. The behaviour of this antibiotic suggests that it is identical with, or very closely related to, xanthomycin A - a substance which has been isolated from species of Streptomyces1, and stated to have quinonoid properties2. We wish to record, however, that it is a stronger base than xanthomycin A has been reported to be and that it yields two simple bases on hydrolysis which have not been described as degradation products of xanthomycin A. © 1955 Nature Publishing Group.
    Matched MeSH terms: Anti-Bacterial Agents
  7. Azman AS, Mawang CI, Khairat JE, AbuBakar S
    Int Microbiol, 2019 Dec;22(4):403-409.
    PMID: 30847714 DOI: 10.1007/s10123-019-00066-4
    A biofilm is a community of microorganisms attached to a surface and embedded in a matrix of extracellular polymeric substances. Biofilms confer resistance towards conventional antibiotic treatments; thus, there is an urgent need for newer and more effective antimicrobial agents that can act against these biofilms. Due to this situation, various studies have been done to investigate the anti-biofilm effects of natural products including bioactive compounds extracted from microorganisms such as Actinobacteria. This review provides an insight into the anti-biofilm potential of Actinobacteria against various pathogenic bacteria, which hopefully provides useful information, guidance, and improvements for future antimicrobial studies. Nevertheless, further research on the anti-biofilm mechanisms and compound modifications to produce more potent anti-biofilm effects are required.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  8. Loh KY, Tee CT
    Family Physician, 2005;13:18-18.
    Matched MeSH terms: Anti-Bacterial Agents
  9. Riley PA
    JUMMEC, 1996;1:17-19.
    The conventional use of aminoglycoside antibiotics has several disadvantages including the need for regular pre- and post-dose assaying and the risks of toxicity. Achieving a therapeutic and non-toxic serum concentration may be difficult in many patients especially those with severe sepsis. Correct timing of doses and assays is essential, but this is often difficult to achieve. Many of these difficulties may be remedied by the use of once daily dosing. This dosing schedule appears to be equally effective as the conventional method and i s also less toxic. There are many other advantages including the need for less assays and venepuncture resulting in reduced costs. KEYWORDS: Aminoglycosides, antibiotic therapy, toxicity, therapeutic monitoring
    Matched MeSH terms: Anti-Bacterial Agents
  10. Thong KL, Puthucheary S, Boey CCM, Pang T
    JUMMEC, 1999;4:103-109.
    A restropective study on a case of recurent salmonellosis in a 3 month old child due to Salmonella bovismorbificans and Salmonella matopeni was carried out using pulsed field gel electrophoresis (PFGE) and antibiotic susceptibility analysis. PFGE clearly distinguished the two serovars and that the recurrent infection was shown to associated with variant forms of Salmonella bovismorbificans. The chromosomal changes detected among the seqential isolates of Salmonella bovismorbificans appeared to be associated with varing antibiogram patterns. The study also showed that the recurrent infection in the patient could be related to prolonged antibiotic therapy. KEYWORDS: Recurrent salmonellosis, PFGE typing, Antibiograms, Salmonella bovismorbificans.
    Matched MeSH terms: Anti-Bacterial Agents
  11. Hung CM, Chen CW, Huang CP, Shiung Lam S, Dong CD
    Bioresour Technol, 2022 Jan;343:126082.
    PMID: 34610427 DOI: 10.1016/j.biortech.2021.126082
    Antibiotic sulfamethoxazole (SMX) has been commonly found in various water matrices, therefore effective decontamination method is urgently needed. Metal-free pristine coconut-shell-derived biochar (CSBC), synthesized by thermochemical conversion at 700 °C, was used for activating peroxymonosulfate (PMS), an oxidant, to degrade SMX, a sulfonamide antibiotic, in water. SMX degradation, maximized at 0.05 mM concentration, was 85% in 30 min at pH 5.0 in the presence of 150 mg L-1 of CSBC. Remarkably, SMX removal reached 99% in a chloride-rich CSBC/PMS system. SMX degradation was mainly attributed to the role of CSBC in enhancing PMS activation to produce combined radical (SO4•-/HO•) and nonradical (1O2) reaction pathways. The most abundant genus in the CSBC/PMS system was Methylotenera, which belonged to the Proteobacteria phylum. Thus, from a perspective of biowaste-to-resource recycling and circular bioeconomy view point, CSBC is a potential catalytic activator of PMS for the removal of sulfonamide antibiotics from aqueous environments.
    Matched MeSH terms: Anti-Bacterial Agents
  12. Yan L, Chen W, Wang C, Liu S, Liu C, Yu L, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132510.
    PMID: 34627823 DOI: 10.1016/j.chemosphere.2021.132510
    Tetracycline is a potentially hazardous residual antibiotic detected in various sewages. High concentration (mg/L) of tetracycline is found in pharmaceutical/hospital wastewater and wastewater derived from livestock and poultry. So far, only antibiotics in μg/L level have been reported in granulation of aerobic sludge during wastewater treatment, but its effects in high concentration are rarely reported. In this study, the influence of tetracycline in high concentration (∼2 mg/L) on the formation of granular sludge, structure, and metabolic function of the microbial community during the granulation of aerobic sludge was investigated to improve the understanding of the aerobic granular sludge formation under high-level of tetracycline. The role of extracellular polymers substances (EPSs) derived from granular sludge in the granulation and tetracycline removal process was also investigated, showing that tetracycline improved the relative hydrophobicity, flocculability and protein/polysaccharide ratio of EPSs, accelerating the granulation of sludge. Succession of microbial communities occurred during the domestication of functional bacteria present in the sludge and was accompanied with regulation of metabolic function. The addition of tetracycline lead to an increase of tetracycline-degrading bacteria or antibiotic resistance genus. Those findings provide new perspectives of the influence of tetracycline on aerobic sludge granulation and the removal mechanism of tetracycline.
    Matched MeSH terms: Anti-Bacterial Agents
  13. Nasir F, Asha'ari ZA
    Malays Fam Physician, 2017;12(2):26-28.
    PMID: 29423127
    Otitis media is a common disease encountered in the primary practice. Most cases are successfully treated with antibiotics without any sequelae. Because of these, potential serious complications of otitis media may be overlooked. We report a rare case of Bezold's abscess, as a complication of otitis media and discuss its pathophysiology and management.
    Matched MeSH terms: Anti-Bacterial Agents
  14. Nasir F., Zamzil Amin Asha’ari
    Malays Fam Physician, 2017;12(2):26-28.
    MyJurnal
    Otitis media is a common disease encountered in the primary practice. Most cases are successfully
    treated with antibiotics without any sequelae. Because of these, potential serious complications of otitis
    media may be overlooked.
    We report a rare case of Bezold’s abscess, as a complication of otitis media and discuss its
    pathophysiology and management.
    Matched MeSH terms: Anti-Bacterial Agents
  15. Rongo C, Prusty B, Baban B, Daood U, Ilyas MS, Kimmerling K
    J Wound Care, 2024 Mar 01;33(Sup3):S11-S12.
    PMID: 38457304 DOI: 10.12968/jowc.2024.33.Sup3.S11a
    Matched MeSH terms: Anti-Bacterial Agents
  16. Bokhari N, Ali A, Yasmeen A, Khalid H, Safi SZ, Sharif F
    Int J Biol Macromol, 2023 Dec 31;253(Pt 6):127284.
    PMID: 37806415 DOI: 10.1016/j.ijbiomac.2023.127284
    Soft tissue defects like hernia and post-surgical fistula formation can be resolved with modern biomaterials in the form of meshes without post-operative complications. In the present study hand knitted silk meshes were surface coated with regenerated silk fibroin hydrogel and pure natural extracts. Two phytochemicals (Licorice extract (LE) and Bearberry extract (BE)) and the two honeybee products (royal jelly (RJ) and honey (HE)) were incorporated separately to induce antibacterial, anti-inflammatory, and wound healing ability to the silk hydrogel coated knitted silk meshes. Meshes were dip coated with a blend of 4 % silk hydrogel (w/v) and 5 % extracts. Dried modified meshes were characterized using SEM, DMA, GC-MS and FTIR. Antimicrobial testing, in-vitro cytotoxicity, in-vitro wound healing and Q-RT-PCR were also performed. SEM analysis concluded that presence of coating reduced the pore size up to 47.7 % whereas, fiber diameter was increased up to 17.9 % as compared to the control. The presence of coating on the mesh improved the mechanical strength/Young's modulus by 1602.8 %, UTS by 451.7 % and reduced the % strain by 51.12 %. Sustained release of extracts from MHRJ (62.9 % up to 72 h) confirmed that it can induce antibacterial activity against surgical infections. Cytocompatibility testing and gene expression results suggest that out of four variables MHRJ presented best cell viability, % wound closure and expression of wound healing marker genes. In-vivo analyses in rat hernia model were carried out using only MHRJ variant, which also confirmed the non- toxic nature and wound healing characteristics of the modified mesh. The improved cell proliferation and activated wound healing in vitro and in vivo suggested that MHRJ could be a valuable candidate to promote cell infiltration and activate soft tissue and hernia repair as a biomedical implant.
    Matched MeSH terms: Anti-Bacterial Agents
  17. Bo S, Chang SK, Chen Y, Sheng Z, Jiang Y, Yang B
    Crit Rev Food Sci Nutr, 2024;64(9):2490-2512.
    PMID: 36123801 DOI: 10.1080/10408398.2022.2124396
    Rare flavonoids, a special subclass of naturally occurring flavonoids with diverse structures including pterocarpans, aurones, neoflavonoids, homoisoflavones, diphenylpropanes, rotenoids and 2-phenylethyl-chromones. They are mainly found in legumes with numerous health benefits. Rare flavonoids are regarded as minor flavonoids due to their very limited abundance in nature. This review gives an overview of the natural occurrences of rare flavonoids from previous literatures. Recent findings on the biosynthesis of rare flavonoids have been updated by describing their structural characteristics and classifications. Recent findings on the health benefits of rare flavonoids have also been compiled and discussed. Natural rare flavonoids with various characteristics from different subclasses from plant-based food sources are stated. They show a wide range of health benefits, including antibacterial, anticancer, anti-osteoporosis and antiviral activities. Studies reviewed suggest that rare flavonoids possessing different skeletons demonstrate different characteristic bioactivities by discussing their mechanism of actions and structure-activity relationships. Besides, recent advances on the biosynthesis of rare flavonoids, such as pterocarpans, rotenoids and aurones are well-known, while the biosynthesis of other subclasses remain unknown. The perspectives and further applications of rare flavonoids using metabolic engineering strategies also be expected.
    Matched MeSH terms: Anti-Bacterial Agents
  18. Chu KH, Hashim MA
    Environ Sci Pollut Res Int, 2024 Mar;31(14):21136-21143.
    PMID: 38386161 DOI: 10.1007/s11356-024-32450-7
    The Yoon-Nelson model serves as a widely used tool for describing the breakthrough behavior of organic micropollutants within fixed bed adsorbers. This study aims to augment its modeling efficacy through two proposed refinements found in the literature: a logarithmic transformation and the incorporation of steric hindrance effects. We systematically evaluated the original Yoon-Nelson model alongside the modified versions, using breakthrough data associated with micropollutant adsorption on solid materials. Three distinct cases were scrutinized: (1) caffeine adsorption on activated carbon; (2) tetracycline adsorption on hierarchical porous carbon; and (3) diclofenac adsorption on organoclay. While all three models demonstrated comparable performance with highly symmetric breakthrough data in case 1, their efficacy diverged significantly when confronted with strongly asymmetric breakthrough data in cases 2 and 3. The original Yoon-Nelson model and the logarithmically modified version fell short in accurately representing these intricate breakthrough curves. In contrast, the version incorporating steric hindrance effects showcased substantial accuracy, outperforming other models in capturing the complexities of asymmetric breakthrough data. This advancement markedly enhances the modeling accuracy and versatility of the Yoon-Nelson model, particularly in assessing the dynamic behavior of organic micropollutants within fixed bed adsorbers.
    Matched MeSH terms: Anti-Bacterial Agents
  19. Chilamakuru NB, Singirisetty T, Bodapati A, Kallam SDM, Nelson VK, Suryadevara PR, et al.
    Luminescence, 2024 Nov;39(11):e70026.
    PMID: 39529222 DOI: 10.1002/bio.70026
    This study focuses on developing novel antimicrobials to combat drug-resistant pathogens, addressing compounds failing clinical trials due to inadequate physicochemical properties. Sixteen imidazolidine-4-one derivatives were synthesized by extensive evaluation using molecular docking, absorption, distribution, metabolism, excretion (ADME) predictions, and antimicrobial testing. Molecular docking studies conducted with Schrödinger's Glide revealed that compounds S4 and G8 exhibited superior docking scores of -7.839 and -7.776, respectively. The G series outperformed the S series in scores. ADME analysis confirmed all compounds adhered to Lipinski's rule of five. In addition, IR and NMR provided details about the structure of the compounds. Antimicrobial activity was assessed against Escherichia coli, Staphylococcus aureus, and Candida albicans, with compounds G2 and S2 showing exceptional minimum inhibitory concentration (MIC) values of 6.25 μg/mL against E. coli. S2 also demonstrated impressive activity against S. aureus (MIC 3.12 μg/mL), and S4 exhibited potent activity against C. albicans (MIC 0.8 μg/mL) than fluconazole (1.6 μg/mL). Additionally, antihelmintic activity was evaluated, with G1, G3, G8, S2, S4, S7, and S8 showing effective paralysis and death time 20 min and below at 50 mg/mL concentration. These results underscore the potential of new imidazolidine-4-one derivatives as suitable sources to develop a drug candidate to treat resistant infections.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis; Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry
  20. Le Han H, Pham PTV, Kim SG, Chan SS, Khoo KS, Chew KW, et al.
    Mol Biotechnol, 2024 Dec;66(12):3618-3627.
    PMID: 38042757 DOI: 10.1007/s12033-023-00963-0
    Multidrug resistance to pathogens has posed a severe threat to public health. The threat could be addressed by antimicrobial peptides (AMPs) with broad-spectrum suppression. In this study, Brevibacillus halotolerans 7WMA2, isolated from marine sediment, produced AMPs against Gram-positive and Gram-negative bacteria. The AMPs were precipitated by ammonium sulfate 30% (w/v) from culture broth and dialyzed by a 1 kDa membrane. Tryptone Soy Agar (TSA) was used for the cultivation and resulted in the largest bacteria-inhibiting zones under aerobic conditions at 25 °C, 48 h. An SDS-PAGE gel overlay test revealed that strain 7WMA2 could produce AMPs of 5-10 kDa and showed no degradation when held at 121 °C for 30 min at a wide pH 2-12 range. The AMPs did not cause toxicity to HeLa cells with concentrations up to 500 µg/mL while increasing the arbitrary unit up to eight times. The study showed that the AMPs produced were unique, with broad-spectrum antimicrobial ability.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links