Displaying publications 161 - 180 of 379 in total

Abstract:
Sort:
  1. Hazwani Hasmi, Asmida Ahmad, Faeiza Buyong
    Science Letter, 2016;10(2):19-22.
    MyJurnal
    —Anaerobic digestion (AD) of biomass is a well-established process to produce renewable energy, where organic matter is converted to biogas by microorganism. High solid content and complex structure of sludge-derived organic matter, methane production during digestion is limited at the hydrolysis step. Therefore pre-treatment of substrate is a way to accelerate the hydrolysis step. This study aimed to identify the optimum pre-treatment method to increase the methane production from poultry waste prior anaerobic digestion. The poultry waste was mixed with water, pre-treated, seeded with inoculums. Chemical and thermochemical pre-treatment were performed with NaOH and Ca(OH)2. The AD was conducted in bioreactors and incubated in water bath at 37 °C for 15 days. Results obtained show that the highest methane yield was at the thermochemical pre-treatment with Ca(OH)2 with cumulative amount of methane at 1665.17 ppm followed by chemical pre-treatment with Ca(OH)2, thermochemical pre-treatment with NaOH and chemical pre-treatment with NaOH with cumulative amount of methane at 1381.76 ppm, 884.07 ppm and 607.98 ppm respectively. Based on the comparison of the results, the thermochemical pre-treatment with Ca(OH)2 is the best pre-treatment as it produced the highest methane yield.
    Matched MeSH terms: Bioreactors
  2. Basri HF, Anuar AN, Halim MHA, Yuzir MA, Muda K, Omoregie AI, et al.
    Environ Monit Assess, 2023 Feb 21;195(3):420.
    PMID: 36809517 DOI: 10.1007/s10661-023-11028-9
    This paper presents an assessment of the start-up performance of aerobic granular sludge (AGS) for the treatment of low-strength (chemical oxygen demand, COD 
    Matched MeSH terms: Bioreactors
  3. Moideen SNF, Krishnan S, Li YY, Hassim MH, Kamyab H, Nasrullah M, et al.
    Chemosphere, 2023 Mar;317:137923.
    PMID: 36682635 DOI: 10.1016/j.chemosphere.2023.137923
    An anaerobic membrane bioreactor (AnMBR) was employed as primary treatment unit for anaerobic treatment of simulated wastewater to produce high effluent quality. A lab scale hollow fiber membrane was used to scrutinize the performance of AnMBR as a potential treatment system for simulated milk wastewater and analyze its energy recovery potential. The 15 L bioreactor was operated continuously at mesophilic conditions (35 °C) with a pH constant of 7.0. The membrane flux was in the range of 9.6-12.6 L/m2. h. The different organic loading rates (OLRs) of 1.61, 3.28, 5.01, and 8.38 g-COD/L/d, of simulated milk wastewater, were fed to the reactor and the biogas production rate was analyzed, respectively. The results revealed that the COD removal efficiencies of 99.54 ± 0.001% were achieved at the OLR of 5.01 gCOD/L/d. The highest methane yield was found to be at OLR of 1.61 gCOD/L/d at HRT of 30 d with the value of 0.33 ± 0.01 L-CH4/gCOD. Moreover, based on the analysis of energy balance in the AnMBR system, it was found that energy is positive at all the given HRTs. The net energy production (NEP) ranged from 2.594 to 3.268 kJ/gCOD, with a maximum NEP value of 3.268 kJ/gCOD at HRT 10 d HRT. Bioenergy recovery with the maximum energy ratio, of 4.237, was achieved with an HRT of 5 d. The study suggests a sizable energy saving with the anaerobic membrane process.
    Matched MeSH terms: Bioreactors
  4. Kee WC, Wong YS, Ong SA, Lutpi NA, Sam ST, Dahalan FA, et al.
    Environ Sci Pollut Res Int, 2023 May;30(24):65364-65378.
    PMID: 37081370 DOI: 10.1007/s11356-023-27046-6
    Sugarcane vinasse has been reported as a high strength industrial wastewater that could cause severe environmental pollution due to its complex and bio-refractory compounds. Thus, the combined coagulation and sequencing batch biofilm reactor (SBBR) system was employed for the sugarcane vinasse treatment. This study aims to determine the recommended conditions of various parameters under coagulation and SBBR and investigate the effectiveness of combined processes. First, the approach of the coagulation process could achieve the maximum COD reduction and decolorization efficiencies of 79.0 ± 3.4% and 94.1 ± 1.9%, respectively, under the recommended conditions. Next, SBBR as an integrated biofilm reactor showed excellent synergistic biodegradability, removing 86.6 ± 4.3% COD concentration and 94.6 ± 3.8% color concentration at 3.0 g·COD/L of substrate loading concentration. The kinetic studies of SBBR revealed that the first-order kinetic model was the best fit for COD reduction efficiency. In contrast, the second-order kinetic model was the best fit for decolorization efficiency. The SBBR reaction was further investigated by ultraviolet-visible spectrophotometry (UV-Vis). In the combined processes, SBBR followed by the coagulation process (SBBR-CP) showed greater COD reduction and decolorization efficiencies (97.5 ± 0.3 and 99.4 ± 0.1%) when compared to the coagulation process followed by SBBR (CP-SBBR). This study demonstrated the removal performance and potential application of the combined sequential process to produce effluent that can be reused for bioethanol production and fertigation. This finding provides additional insight for developing effective vinasse treatment using combined chemical and biological processes.
    Matched MeSH terms: Bioreactors
  5. Raketh M, Kana R, Kongjan P, Faua'ad Syed Muhammad SA, O-Thong S, Mamimin C, et al.
    J Environ Manage, 2023 Nov 15;346:119031.
    PMID: 37741194 DOI: 10.1016/j.jenvman.2023.119031
    This study aimed at investigating the biohydrogen and biomethane potential of co-digestion from palm oil mill effluent (POME) and concentrated latex wastewater (CLW) in a two-stage anaerobic digestion (AD) process under thermophilic (55 ± 3 °C) and at an ambient temperature (30 ± 3 °C) conditions, respectively. The batch experiments of POME:CLW mixing ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 was investigated with the initial loadings at 10 g-VS/L. The highest hydrogen yield of 115.57 mLH2/g-VS was obtained from the POME: CLW mixing ratio of 100:0 with 29.0 of C/N ratio. While, the highest subsequent methane production yield of 558.01 mLCH4/g-VS was achieved from hydrogen effluent from POME:CLW mixing ratio of 70:30 0 with 21.8 of C/N ratio. This mixing ratio revealed the highest synergisms of about 9.21% and received maximum total energy of 19.70 kJ/g-VS. Additionally, continuous hydrogen and methane production were subsequently performed in a series of continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge blanket reactor (UASB) to treat the co-substate. The results indicated that the highest hydrogen yield of POME:CLW mixing ratio at 70:30 of 95.45 mL-H2/g-VS was generated at 7-day HRT, while methane production was obtained from HRT 15 days with a yield of 204.52 mL-CH4/g-VS. Thus, the study indicated that biogas production yield of CLW could be enhanced by co-digesting with POME. In addition, the two-stage AD model under anaerobic digestion model no. 1 (ADM-1) framework was established, 9.10% and 2.43% of error fitting of hydrogen and methane gas between model simulation data and experimental data were found. Hence, this research work presents a novel approach for optimization and feasibility for co-digestion of POME with CLW to generate mixed gaseous biofuel potentially.
    Matched MeSH terms: Bioreactors
  6. Wan Mohtar WHM, Wan-Mohtar WAAQI, Zahuri AA, Ibrahim MF, Show PL, Ilham Z, et al.
    Bioengineered, 2022;13(7-12):14903-14935.
    PMID: 37105672 DOI: 10.1080/21655979.2023.2184785
    Fungal biomass is the future's feedstock. Non-septate Ascomycetes and septate Basidiomycetes, famously known as mushrooms, are sources of fungal biomass. Fungal biomass, which on averagely comprises about 34% protein and 45% carbohydrate, can be cultivated in bioreactors to produce affordable, safe, nontoxic, and consistent biomass quality. Fungal-based technologies are seen as attractive, safer alternatives, either substituting or complementing the existing standard technology. Water and wastewater treatment, food and feed, green technology, innovative designs in buildings, enzyme technology, potential health benefits, and wealth production are the key sectors that successfully reported high-efficiency performances of fungal applications. This paper reviews the latest technical know-how, methods, and performance of fungal adaptation in those sectors. Excellent performance was reported indicating high potential for fungi utilization, particularly in the sectors, yet to be utilized and improved on the existing fungal-based applications. The expansion of fungal biomass in the industrial-scale application for the sustainability of earth and human well-being is in line with the United Nations' Sustainable Development Goals.
    Matched MeSH terms: Bioreactors
  7. Nuid M, Aris A, Krishnen R, Chelliapan S, Muda K
    J Environ Manage, 2023 Oct 15;344:118501.
    PMID: 37418913 DOI: 10.1016/j.jenvman.2023.118501
    This study was to develop biogranules using a sequencing batch reactor (SBR) and to evaluate the effect of pineapple wastewater (PW) as a co-substrate for treating real textile wastewater (RTW). The biogranular system cycle was 24 h (2 stages of phase), with an anaerobic phase (17.8 h) followed by an aerobic phase (5.8 h) for every stage of the phase. The concentration of pineapple wastewater was the main factor studied in influencing COD and color removal efficiency. Pineapple wastewater with different concentrations (7, 5, 4, 3, and 0% v/v) makes a total volume of 3 L and causes the OLRs to vary from 2.90 to 0.23 kg COD/m3day. The system achieved 55% of average color removal and 88% of average COD removal at 7%v/v PW concentration during treatment. With the addition of PW, the removal increased significantly. The experiment on the treatment of RTW without any added nutrients proved the importance of co-substrate in dye degradation.
    Matched MeSH terms: Bioreactors
  8. Ahmad A, Ghufran R
    Crit Rev Biotechnol, 2023 Dec;43(8):1236-1256.
    PMID: 36130802 DOI: 10.1080/07388551.2022.2103641
    This critical review for anaerobic degradation of complex organic compounds like butyrate using reactors has been enormously applied for biogas production. Biogas production rate has a great impact on: reactor granulation methanogenesis, nutrient content, shear velocity, organic loading and loss of nutrients taking place in the reactor continuously. Various technologies have been applied to closed anaerobic reactors to improve biogas production and treatment efficiency. Recent reviews showed that the application of closed anaerobic reactors can accelerate the degradation of organics like volatile fatty acid-butyrate and affect microbial biofilm formation by increasing the number of methanogens and increase methane production 16.5 L-1 CH4 L-1 POME-1. The closed anaerobic reactors with stable microbial biofilm and established organic load were responsible for the improvement of the reactor and methane production. The technology mentioned in this review can be used to monitor biogas concentration, which directly correlates to organic concentrations. This review attempts to evaluate interactions among the: degradation of organics, closed anaerobic reactors system, and microbial granules. This article provides a useful picture for the improvement of the degradation of organic butyrate for COD removal, biogas and methane production in an anaerobic closed reactor.
    Matched MeSH terms: Bioreactors
  9. Alshiyab H, Kalil MS, Hamid AA, Yusoff WM
    Pak J Biol Sci, 2008 Oct 01;11(19):2336-40.
    PMID: 19137867
    The effect of removal of resultant gas resulted in enhancement of the H2 yield. The technique of CO2 scavenging resulted in H2 yield being improved from 408 mL g(-1) to reach the maximum of 422 mL g'. The highest hydrogen productivity of 87.9 ml L(-1) h(-1) was obtained by CO2 scavenging. Biomass concentration was enhanced to 1.47 g L(-1), Y(P,X) of 287 ml g(-1) L(-1), Y(X/S) of 0.294 and Y(H2/s) of 0.0377 by the use of CO2 scavenging. The results suggested that the presence of the gaseous products in fermentation medium and headspace adversely effect biomass growth and hydrogen production.
    Matched MeSH terms: Bioreactors
  10. Waqas S, Harun NY, Arshad U, Laziz AM, Sow Mun SL, Bilad MR, et al.
    Chemosphere, 2024 Feb;349:140830.
    PMID: 38056711 DOI: 10.1016/j.chemosphere.2023.140830
    Membrane fouling is a critical bottleneck to the widespread adoption of membrane separation processes. It diminishes the membrane permeability and results in high operational energy costs. The current study presents optimizing the operating parameters of a novel rotating biological contactor (RBC) integrated with an external membrane (RBC + ME) that combines membrane technology with an RBC. In the RBC + ME, the membrane panel is placed external to the bioreactor. Response surface methodology (RSM) is applied to optimize the membrane permeability through three operating parameters (hydraulic retention time (HRT), rotational disk speed, and sludge retention time (SRT)). The artificial neural networks (ANN) and support vector machine (SVM) are implemented to depict the statistical modelling approach using experimental data sets. The results showed that all three operating parameters contribute significantly to the performance of the bioreactor. RSM revealed an optimum value of 40.7 rpm disk rotational speed, 18 h HRT and 12.4 d SRT, respectively. An ANN model with ten hidden layers provides the highest R2 value, while the SVM model with the Bayesian optimizer provides the highest R2. RSM, ANN, and SVM models reveal the highest R-square values of 0.97, 0.99, and 0.99, respectively. Machine learning techniques help predict the model based on the experimental results and training data sets.
    Matched MeSH terms: Bioreactors
  11. Pramanik BK, Pramanik SK, Suja F
    Environ Technol, 2016 Aug;37(15):1857-64.
    PMID: 26695189 DOI: 10.1080/09593330.2015.1134677
    The impact of biological activated carbon (BAC), sand filtration (SF) and biological aerated filter (BAF) for removal of the selected organic micropollutants and polyfluoroalkyl substances (PFASs) from secondary effluent was studied. BAC led to greater removal of dissolved organic carbon (43%) than BAF (30%) which in turn was greater than SF (24%). All biological filtration systems could effectively remove most of the selected organic micropollutants, and there was a greater removal of these micropollutants by BAC (76-98%) than BAF (70-92%) or SF (68-90%). It was found that all treatment was effective for removal of the hydrophobic (log D > 3.2) and readily biodegradable organic micropollutants. The major mechanism for the removal of these molecules was biodegradation by the micro-organism and sorption by the biofilm. Compared to organic micropollutants removal, there was a lower removal of PFASs by all treatments, and BAF and SF had a considerably lower removal than BAC treatment. The better removal for all molecule types by BAC was due to additional adsorption capacity by the activated carbon. This study demonstrated that the BAC process was most effective in removing organic micropollutants present in the secondary effluent.
    Matched MeSH terms: Bioreactors/microbiology*
  12. Liau KF, Shoji T, Ong YH, Chua AS, Yeoh HK, Ho PY
    Bioprocess Biosyst Eng, 2015 Apr;38(4):729-37.
    PMID: 25381606 DOI: 10.1007/s00449-014-1313-3
    A recently reported stable and efficient EBPR system at high temperatures around 30 °C has led to characterization of kinetic and stoichiometric parameters of the Activated Sludge Model no. 2d (ASM2d). Firstly, suitable model parameters were selected by identifiability analysis. Next, the model was calibrated and validated. ASM2d was found to represent the processes well at 28 and 32 °C except in polyhyroxyalkanoate (PHA) accumulation of the latter. The values of the kinetic parameters for PHA storage (q PHA), polyphosphate storage (q PP) and growth (μ PAO) of polyphosphate-accumulating organisms (PAOs) at 28 and 32 °C were found to be much higher than those reported by previous studies. Besides, the value of the stoichiometric parameter for the requirement of polyphosphate for PHA storage (Y PO4) was found to decrease as temperature rose from 28 to 32 °C. Values of two other stoichiometric parameters, i.e. the growth yield of heterotrophic organisms (Y H) and PAOs (Y PAO), were high at both temperatures. These calibrated parameters imply that the extremely active PAOs of the study were able to store PHA, store polyphosphate and even utilize PHA for cell growth. Besides, the parameters do not follow the Arrhenius correlation due to the previously reported unique microbial clade at 28 and 32 °C, which actively performs EBPR at high temperatures.
    Matched MeSH terms: Bioreactors*
  13. Liew WL, Kassim MA, Muda K, Loh SK, Affam AC
    J Environ Manage, 2015 Feb 1;149:222-35.
    PMID: 25463585 DOI: 10.1016/j.jenvman.2014.10.016
    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated.
    Matched MeSH terms: Bioreactors*
  14. Ganjali Dashti M, Abdeshahian P, Wan Yusoff WM, Kalil MS, Abdul Hamid A
    Biomed Res Int, 2014;2014:831783.
    PMID: 25147817 DOI: 10.1155/2014/831783
    The biosynthesis of biomedical products including lipid and gamma-linolenic acid (GLA) by Cunninghamella bainieri 2A1 was studied in repeated batch fermentation. Three key process variables, namely, glucose concentration, ammonium tartrate concentration, and harvesting time, were optimized using response surface methodology. Repeated batch fermentation was carried out by the cultivation of Cunninghamella bainieri 2A1 in nitrogen-limited medium with various nitrogen concentration (1-4 g/L) and glucose concentration (20-40 g/L) at three time intervals (12 h, 24 h, and 48 h). Experimental results showed that the highest lipid concentration of 6.2 g/L and the highest GLA concentration of 0.4 g/L were obtained in optimum conditions, where 20.2 g/L glucose, 2.12 g/L ammonium tartrate, and 48 h harvesting time were utilized. Statistical results showed that the interaction between glucose and ammonium tartrate concentration had highly significant effects on lipid and GLA biosynthesis (P < 0.01). Moreover, harvesting time had a significant interaction effect with glucose and ammonium tartrate concentration on lipid production (P < 0.05).
    Matched MeSH terms: Bioreactors/microbiology
  15. Zhou X, Qu Y, Kim BH, Choo PY, Liu J, Du Y, et al.
    Bioresour Technol, 2014 Oct;169:265-70.
    PMID: 25062537 DOI: 10.1016/j.biortech.2014.07.012
    The effects of azide on electron transport of exoelectrogens were investigated using air-cathode MFCs. These MFCs enriched with azide at the concentration higher than 0.5mM generated lower current and coulomb efficiency (CE) than the control reactors, but at the concentration lower than 0.2mM MFCs generated higher current and CE. Power density curves showed overshoot at higher azide concentrations, with power and current density decreasing simultaneously. Electrochemical impedance spectroscopy (EIS) showed that azide at high concentration increased the charge transfer resistance. These analyses might reflect that a part of electrons were consumed by the anode microbial population rather than transferred to the anode. Bacterial population analyses showed azide-enriched anodes were dominated by Deltaproteobacteria compared with the controls. Based on these results it is hypothesized that azide can eliminate the growth of aerobic respiratory bacteria, and at the same time is used as an electron acceptor/sink.
    Matched MeSH terms: Bioreactors/microbiology
  16. Asih DR, Alam MZ, Alam Z, Salleh MN, Salleh N, Salihu A
    J Oleo Sci, 2014;63(8):779-85.
    PMID: 25017863
    A pilot-scale production of lipase using palm oil mill effluent (POME) as a fermentation basal medium was carried out, and parameters for immobilization of the produced lipase were optimized. Lipase production in a 300-L bioreactor was performed using two proposed strategies, constant power per volume (P/V) and constant tip speed. Moreover, lipase immobilization on different materials was also investigated. Lipase production was performed using liquid-state bioconversion of POME as the medium and Candida cylindracea as the inoculum. The fermentation medium was composed of 1% total suspended solids (TSS) of POME, 0.5% (w/v) peptone, 0.7% (v/v) Tween-80, and 2.2% inoculum. The medium composition was decided on the basis of the medium optimization results of a previous study. The fermentation was carried out for 48 h at 30°C and pH 6. The maximum lipase production was 5.72U/mL and 21.34 U/mL, obtained from the scale-up strategies of constant tip speed and P/V, respectively. Four accessible support materials were screened for their potential use in immobilization. The most suitable support material was found to be activated carbon, with a maximum immobilization of 94%.
    Matched MeSH terms: Bioreactors*
  17. Hassana SR, Zwaina HM, Zamana NQ, Dahlanb I
    Environ Technol, 2014 Jan-Feb;35(1-4):294-9.
    PMID: 24600868
    Start-up period is considered to be the most unstable and difficult stage in anaerobic process and usually takes a long time due to slow-degree adaptation of anaerobic microorganisms. In order to achieve a shorter start-up period, a novel modified anaerobic baffled reactor (MABR) has been developed in this study, where each modified baffle has its own characteristics (form/shape) to facilitate a treatment ofrecycled paper mill effluent (RPME). The results ofphysico-chemical characteristics showed that effluent from recycled paper mill consisted of 4328mgL-1 chemical oxygen demand (COD), 669mg L-1 biochemical oxygen demand and 501mg L-1 volatile fatty acid. It also consisted of variety of heavy metals such as zinc, magnesium, iron and nickel at concentrations of 1.39, 12.19, 2.39 and 0.72 mgL-1, respectively. Performance of MABR during the start-up period showed that methane production reached 34.7% with COD removal of 85% at steady state. The result indicates that MABR was successfully operated during the start-up period in treating RPME within a period of less than 30 days.
    Matched MeSH terms: Bioreactors/microbiology*
  18. Harun H, Anuar AN, Ujang Z, Rosman NH, Othman I
    Water Sci Technol, 2014;69(11):2252-7.
    PMID: 24901619 DOI: 10.2166/wst.2014.156
    Aerobic granular sludge (AGS) has been applied to treat a broad range of industrial and municipal wastewater. AGS can be developed in a sequencing batch reactor (SBR) with alternating anaerobic-aerobic conditions. To provide anaerobic conditions, the mixed liquor is allowed to circulate in the reactor without air supply. The circulation flow rate of mixed liquor in anaerobic condition is the most important parameter of operation in the anaerobic-AGS processes. Therefore, this study investigates the effect of circulation rate on the performance of the SBR with AGS. Two identical reactors namely R1 and R2 were operated using fermented soy sauce wastewater at circulation rate of 14.4 and 36.0 l/h, respectively. During the anaerobic conditions, the wastewater was pumped out from the upper part of the reactor and circulated back into the bottom of the reactor for 230 min. A compact and dense AGS was observed in both reactors with a similar diameter of 2.0 mm in average, although different circulation rates were adopted. The best reactor performance was achieved in R2 with chemical oxygen demand removal rate of 89%, 90% total phosphorus removal, 79% ammonia removal, 10.1 g/l of mixed liquor suspended solids and a sludge volume index of 25 ml/g.
    Matched MeSH terms: Bioreactors*
  19. Alshelmani MI, Loh TC, Foo HL, Lau WH, Sazili AQ
    ScientificWorldJournal, 2013;2013:689235.
    PMID: 24319380 DOI: 10.1155/2013/689235
    Nine aerobic cellulolytic bacterial cultures were obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ) and the American Type Culture Collection (ATCC). The objectives of this study were to characterize the cellulolytic bacteria and to determine the optimum moisture ratio required for solid state fermentation (SSF) of palm kernel cake (PKC). The bacteria cultures were grown on reconstituted nutrient broth, incubated at 30°C and agitated at 200 rpm. Carboxymethyl cellulase, xylanase, and mannanase activities were determined using different substrates and after SSF of PKC. The SSF was conducted for 4 and 7 days with inoculum size of 10% (v/w) on different PKC concentration-to-moisture ratios: 1 : 0.2, 1 : 0.3, 1 : 0.4, and 1 : 0.5. Results showed that Bacillus amyloliquefaciens 1067 DSMZ, Bacillus megaterium 9885 ATCC, Paenibacillus curdlanolyticus 10248 DSMZ, and Paenibacillus polymyxa 842 ATCC produced higher enzyme activities as compared to other bacterial cultures grown on different substrates. The cultures mentioned above also produced higher enzyme activities when they were incubated under SSF using PKC as a substrate in different PKC-to-moisture ratios after 4 days of incubation, indicating that these cellulolytic bacteria can be used to degrade and improve the nutrient quality of PKC.
    Matched MeSH terms: Bioreactors/microbiology*
  20. Masoumi HR, Basri M, Kassim A, Abdullah DK, Abdollahi Y, Abd Gani SS, et al.
    ScientificWorldJournal, 2013;2013:962083.
    PMID: 24324389 DOI: 10.1155/2013/962083
    Lipase-catalyzed production of triethanolamine-based esterquat by esterification of oleic acid (OA) with triethanolamine (TEA) in n-hexane was performed in 2 L stirred-tank reactor. A set of experiments was designed by central composite design to process modeling and statistically evaluate the findings. Five independent process variables, including enzyme amount, reaction time, reaction temperature, substrates molar ratio of OA to TEA, and agitation speed, were studied under the given conditions designed by Design Expert software. Experimental data were examined for normality test before data processing stage and skewness and kurtosis indices were determined. The mathematical model developed was found to be adequate and statistically accurate to predict the optimum conversion of product. Response surface methodology with central composite design gave the best performance in this study, and the methodology as a whole has been proven to be adequate for the design and optimization of the enzymatic process.
    Matched MeSH terms: Bioreactors*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links