The past decade has seen the re-emergence of Chikungunya virus (CHIKV) as a major global health threat, affecting millions around the world. Although fatal infections are rare among infected patients, the occurrence of long-lasting polyarthralgia has a significant impact on patients' quality of lives and ability to work. These issues were the stimuli for this study to determine the potential of baicalin, a bioflavonoid, as the novel antiviral compound against CHIKV. It was found that baicalin was well tolerated by Vero, BHK-21 and HEK 293T cells with maximal nontoxic doses >600 μM, ≈ 350 μM and ≈110 μM, respectively. Antiviral assays indicated that baicalin was the most effective inhibitor when tested for its direct virucidal activity with EC50 ≈ 7 μM, followed by inhibition of virus entry into the host cell, attachment of virus particle to cellular receptors and finally intracellular replication of viral RNA genome. In silico analysis using molecular docking demonstrated close interactions between baicalin and CHIKV envelope protein with considerably strong binding affinity of -9.7 kcal/mol. qRT-PCR analysis revealed that baicalin had the greatest effect on the synthesis of viral negative stand RNA with EC50 ≈ 0.4 μM followed by the inhibition of synthesis of positive-strand genomic (EC50 ≈ 13 μM) and subgenomic RNAs (EC50 ≈ 14 μM). These readings indicate that the compound efficiently inhibits replicase complexes formation but is a less potent inhibitor of existing replicase complexes. Coherent with this hypothesis, the use of recombinant CHIKV replicons harboring Renilla luciferase marker showed that replication of corresponding replicon RNAs was only slightly downregulated at higher doses of baicalin, with EC50 > 100 μM. Immunofluorescence and western blotting experiments demonstrated dose-dependent inhibition of expression of different viral proteins. It was also observed that levels of important protein markers for cellular autophagy (LC3) and apoptosis (Bax) were reduced in baicalin treatment groups as compared with untreated virus infected controls. In summary, given its low toxicity and high efficacy against CHIKV, baicalin has great potential to be developed as the novel antiviral compound for CHIKV. In vivo studies to evaluate its activity in a more complexed system represent a necessary step for future analysis.
A series of triclosan mimic diphenyl ether derivatives have been synthesized and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The binding mode of the compounds at the active site of enoyl-acyl carrier protein reductase of M. tuberculosis has been explored. Among them, compound 10b was found to possess antitubercular activity (minimum inhibitory concentration =12.5 µg/mL) comparable to triclosan. All the synthesized compounds exhibited low levels of cytotoxicity against Vero and HepG2 cell lines, and three compounds 10a, 10b, and 10c had a selectivity index more than 10. Compound 10b was also evaluated for log P, pKa, human liver microsomal stability, and % protein binding, in order to probe its druglikeness. Based on the antitubercular activity and druglikeness profile, it may be concluded that compound 10b could be a lead for future development of antitubercular drugs.
The 2-amino-5-(3/4-fluorostyryl)acetophenones were prepared and reacted with benzaldehyde derivatives to afford the corresponding 5-styryl-2-aminochalcone hybrids. The trans geometry of the styryl and α,β-unsaturated carbonyl arms, and the presence of NH…O intramolecular hydrogen bond were validated using 1H-NMR and X-ray data. The 2-amino-5-styrylacetophenones and their 5-styryl-2-aminochalcone derivatives were screened in vitro for their capability to inhibit α-glucosidase and/or α-amylase activities. Their antioxidant properties were evaluated in vitro through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. Kinetic studies of the most active derivatives from each series against α-glucosidase and/or α-amylase activities have been performed supported by molecular docking studies to determine plausible protein-ligand interactions on a molecular level. The key aspects of the pharmacokinetics of these compounds, i.e., absorption, distribution, metabolism, and excretion have also been simulated at theoretical level. The most active compounds from each series, namely, 2a and 3e, were evaluated for cytotoxicity against the normal monkey kidney cells (Vero cells) and the adenocarcinomic human epithelial (A549) cell line to establish their safety profile at least in vitro.
The aim of this study is to prepare a model for the production of Newcastle disease virus (NDV) lentogenic F strain using cell culture in bioreactor for live attenuated vaccine preparation. In this study, firstly we investigated the growth of Vero cells in several culture media. The maximum cell number was yielded by culture of Vero cells in Dulbecco's Modified Eagle Medium (DMEM) which was 1.93 x 10(6) cells/ml. Secondly Vero cells were grown in two-litre stirred tank bioreactor by using several commercial microcarriers. We achieved the maximum cell concentration about 7.95 x 10(5) cells/ml when using Cytodex 1. Later we produced Newcastle Disease virus in stirred tank bioreactor based on the design developed using Taguchi L4 method. Results reveal that higher multiplicity of infection (MOI) and size of cell inoculums can yield higher virus titer. Finally, virus samples were purified using high-speed centrifugation based on 3( * *)(3-1) Fractional Factorial Design. Statistical analysis showed that the maximum virus titer can be achieved at virus sample concentration of 58.45% (v/v), centrifugation speed of 13729 rpm, and centrifugation time of 4 hours. As a conclusion, high yield of virus titer could be achieved through optimization of cell culture in bioreactor and separation by high-speed centrifugation.
During 2005, 764 children were brought to a large children's hospital in Ho Chi Minh City, Vietnam, with a diagnosis of hand, foot, and mouth disease. All enrolled children had specimens (vesicle fluid, stool, throat swab) collected for enterovirus isolation by cell culture. An enterovirus was isolated from 411 (53.8%) of the specimens: 173 (42.1%) isolates were identified as human enterovirus 71 (HEV71) and 214 (52.1%) as coxsackievirus A16. Of the identified HEV71 infections, 51 (29.5%) were complicated by acute neurologic disease and 3 (1.7%) were fatal. HEV71 was isolated throughout the year, with a period of higher prevalence in October-November. Phylogenetic analysis of 23 HEV71 isolates showed that during the first half of 2005, viruses belonging to 3 subgenogroups, C1, C4, and a previously undescribed subgenogroup, C5, cocirculated in southern Vietnam. In the second half of the year, viruses belonging to subgenogroup C5 predominated during a period of higher HEV71 activity.
Zika virus (ZIKV) has emerged since 2013 as a significant global human health threat following outbreaks in the Pacific Islands and rapid spread throughout South and Central America. Severe congenital and neurological sequelae have been linked to ZIKV infections. Assessing the ability of common mosquito species to transmit ZIKV and characterizing variation in mosquito transmission of different ZIKV strains is important for estimating regional outbreak potential and for prioritizing local mosquito control strategies for Aedes and Culex species. In this study, we evaluated the laboratory vector competence of Aedes aegypti, Culex quinquefasciatus, and Culex tarsalis that originated in areas of California where ZIKV cases in travelers since 2015 were frequent. We compared infection, dissemination, and transmission rates by measuring ZIKV RNA levels in cohorts of mosquitoes that ingested blood meals from type I interferon-deficient mice infected with either a Puerto Rican ZIKV strain from 2015 (PR15), a Brazilian ZIKV strain from 2015 (BR15), or an ancestral Asian-lineage Malaysian ZIKV strain from 1966 (MA66). With PR15, Cx. quinquefasciatus was refractory to infection (0%, N = 42) and Cx. tarsalis was infected at 4% (N = 46). No ZIKV RNA was detected in saliva from either Culex species 14 or 21 days post feeding (dpf). In contrast, Ae. aegypti developed infection rates of 85% (PR15; N = 46), 90% (BR15; N = 20), and 81% (MA66; N = 85) 14 or 15 dpf. Although MA66-infected Ae. aegypti showed higher levels of ZIKV RNA in mosquito bodies and legs, transmission rates were not significantly different across virus strains (P = 0.13, Fisher's exact test). To confirm infectivity and measure the transmitted ZIKV dose, we enumerated infectious ZIKV in Ae. aegypti saliva using Vero cell plaque assays. The expectorated plaque forming units PFU varied by viral strain: MA66-infected expectorated 13±4 PFU (mean±SE, N = 13) compared to 29±6 PFU for PR15-infected (N = 13) and 35±8 PFU for BR15-infected (N = 6; ANOVA, df = 2, F = 3.8, P = 0.035). These laboratory vector competence results support an emerging consensus that Cx. tarsalis and Cx. quinquefasciatus are not vectors of ZIKV. These results also indicate that Ae. aegypti from California are efficient laboratory vectors of ancestral and contemporary Asian lineage ZIKV.
Tembusu virus (TMUV) is an important emerging arthropod-borne virus that may cause encephalitis in humans and has been isolated in regions of southeast Asia, including Malaysia, Thailand, and China. Currently, detection and identification of TMUV are limited to research laboratories, because quantitative rapid diagnostic assays for the virus do not exist. We describe the development of sensitive and specific conventional and real-time quantitative reverse transcription polymerase chain reaction assays for detecting TMUV RNA in infected cell culture supernatant and Culex tarsalis mosquitoes. We used this assay to document the replication of TMUV in Cx. tarsalis, where titers increased 1,000-fold 5 days after inoculation. These assays resulted in the detection of virus-specific RNA in the presence of copurified mosquito nucleic acids. The use of these rapid diagnostic assays may have future applications for field pathogen surveillance and may assist in early detection, diagnosis, and control of the associated arthropod-borne pathogens.
The study aims to elucidate the pharmacological mechanism of Rauvolfia tetraphylla against breast cancer through a comprehensive, multi-faceted approach. This includes molecular docking, molecular dynamics, and experimental validation. Initial screening via ADME analysis and network pharmacology identified key compounds and potential targets. Protein-protein interaction (PPI) network analysis pinpointed Yes-associated protein-1 (YAP) as a crucial target. Molecular docking revealed that three compounds-ajmaline, reserpine, and serpentine-exhibited strong binding affinities with YAP, with scores of -6.5 to -6.7 kcal/mol. Molecular dynamics simulations were conducted to assess the stability of these interactions further. Experimental validation showed R. tetraphylla inhibited breast cancer cell proliferation, with an IC50 of 348.69 μg/mL, while demonstrating cytoprotective effects on Vero cells (IC50: 1056.23 μg/mL). Migration assays indicated an 88.5% reduction in cell migration, and increased ROS levels signaled elevated stress in cancer cells. Apoptosis was confirmed by AO/EtBr staining. In vivo validation in a DMBA-induced mouse model confirmed significant tumor growth inhibition, supported by changes in YAP expression and histopathological analysis. These findings highlight R. tetraphylla as a promising therapeutic candidate against breast cancer, offering insights into its mechanisms and potential for future drug development and clinical applications.
Enterovirus 71 (EV71) infection may cause severe neurological complications, particularly in young children. Despite the risks, there are still no commercially available EV71 vaccines. Hence, a candidate vaccine construct, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP1(1-100) ) protein, was evaluated in a mouse model of EV71 infection. Previously, it was shown that this protein construct provoked a strong immune response in vaccinated adult rabbits. That study, however, did not address the issue of its effectiveness against EV71 infection in young animals. In the present study, EV71 viral challenge in vaccinated newborn mice resulted in more than 40% increase in survival rate. Significantly, half of the surviving mice fully recovered from their paralysis. Histological analysis of all of the surviving mice revealed a complete clearance of EV71 viral antigens from their brains and spinal cords. In hind limb muscles, the amounts of the antigens detected correlated with the degrees of tissue damage and paralysis. Findings from this study provide evidence that immunization with the NPt-VP1(1-100) immunogen in a newborn mouse model confers partial protection against EV71 infection, and also highlights the importance of NPt-VP1(1-100) as a possible candidate vaccine for protection against EV71 infections.
The use of nontoxic biological compounds in the synthesis of nanomaterials is an economic and eco-friendly approach. The present work was undertaken to develop zinc oxide nanoparticles (ZnO-NPs) by a green method using simple precursor from the solution consisting of zinc acetate and the flower extract of Anchusa italica (A. italica). Effect of annealing temperature on structural and antimicrobial properties was investigated. The crystalline structure of ZnO-NPs was shown using X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) results showed that ZnO-NPs are hexagonal in shapes with mean particle size of ~8 and ~14nm at 100°C and 200°C annealing temperatures respectively. The optical band gap was increased from 3.27eV to 3.30eV with the decreasing of the particle size. The antimicrobial activity of ZnO-NPs towards Gram positive (Bacillus megaterium and Stapphylococcus aureus) and Gram negative (Escherichia coli and Salmonella typhimurium) pathogens decreased with the increasing of the heat treating temperature. In vitro cytotoxicity studies on Vero cells, a dose dependent toxicity with non-toxic effect of concentration below 142μg/mL was shown. The results indicated that A. italica is an appropriate reaction media to prepare ZnO-NPs for cosmetic and bio-medical productions.
Toxoplasma gondii is an obligate intracellular zoonotic parasite of the phylum Apicomplexa which infects a wide range of warm-blooded animals, including humans. In this study in-vivo induced antigens of this parasite was investigated using in-vivo induced antigen technology (IVIAT) and pooled sera from patients with serological evidence of acute infection.
A new resveratrol dimer, acuminatol (1), was isolated along with five known compounds from the acetone extract of the stem bark of Shorea acuminata. Their structures and stereochemistry were determined by spectroscopic methods, which included the extensive use of 2D NMR techniques. All isolated compounds were evaluated for their antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (RSA) and the β-carotene-linoleic acid (BCLA) assays, and compared with those of the standards of ascorbic acid (AscA) and butylated hydroxytoluene (BHT). All compounds tested exhibited good to moderate antioxidant activity in the DPPH assay (IC₅₀s 0.84 to 10.06 mM) and displayed strong inhibition of β-carotene oxidation (IC₅₀s 0.10 to 0.22 mM). The isolated compounds were evaluated on the Vero cell line and were found to be non-cytotoxic with LC₅₀ values between 161 to 830 µM.
Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50) values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.
Thymoquinone (TQ), the active constituent of Nigella sativa or black cumin exhibited cytotoxic effects in several cancer cell lines. In this study, the cytotoxicity of TQ in human cervical squamous carcinoma cells (SiHa) was investigated. TQ was cytotoxic towards SiHa cells with IC50 values of 10.67 ± 0.12 and 9.33 ± 0.19 μg/mL as determined by MTT assay and trypan blue dye exclusion test, respectively, after 72 h of incubation. TQ was more cytotoxic towards SiHa cells compared to cisplatin. Interestingly, TQ was less cytotoxic towards the normal cells (3T3-L1 and Vero). Cell cycle analysis performed by flowcytometer showed a significant increase in the accumulation of TQ-treated cells at sub-G1 phase, indicating induction of apoptosis by the compound. Apoptosis induction by TQ was further confirmed by Annexin V/PI and AO/PI staining. Significant elevation of p53 and down-regulation of the anti-apoptotic Bcl-2 protein was found in the treated cells, without any changes in the expression of the pro-apoptotic Bax protein. In conclusion, thymoquinone from N. sativa was more potent than cisplatin in elimination of SiHa cells via apoptosis with down-regulation of Bcl-2 protein.
Syzygium aqueum, a species in the Myrtaceae family, commonly called the water jambu is native to Malaysia and Indonesia. It is well documented as a medicinal plant, and various parts of the tree have been used in traditional medicine, for instance as an antibiotic. In this study, we show S. aqueum leaf extracts to have a significant composition of phenolic compounds, protective activity against free radicals as well as low pro-oxidant capability. Its ethanolic extract, in particular, is characterized by its excellent radical scavenging activity of EC(50) of 133 μg mL(-1) 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 65 μg mL(-1) 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and 71 μg mL(-1) (Galvinoxyl), low pro-oxidant capabilities and a phenolic content of 585-670 mg GAE g(-1) extract. The extract also displayed other activities, deeming it an ideal cosmetic ingredient. A substantial tyrosinase inhibition activity with an IC(50) of about 60 μg mL(-1) was observed. In addition, the extract was also found to have anti-cellulite activity tested for its ability to cause 98% activation of lipolysis of adipocytes (fat cells) at a concentration of 25 μg mL(-1). In addition, the extract was not cytotoxic to Vero cell lines up to a concentration of 600 μg mL(-1). Although various parts of this plant have been used in traditional medicine, this is the first time it has been shown to have cosmeceutical properties. Therefore, the use of this extract, alone or in combination with other active principles, is of interest to the cosmetic industry.
Xanthorrhizol is a natural sesquiterpenoid compound isolated from the rhizome of Curcuma xanthorrhizza Roxb (Zingerberaceae). Recent studies of xanthorrhizol in cell cultures strongly support the role of xanthorrhizol as an antiproliferative agent. In our study, we tested the antiproliferative effect of xanthorrhizol using different breast cancer cell lines. The invasive breast cancer cell line, MDA-MB-231, was then selected for further investigations. Treatment with xanthorrhizol caused 50% growth inhibition on MDA-MB-231 cells at 8.67 +/- 0.79 microg/ml as determined by sulforhodamine B (SRB) assay. Hoechst 33258 nuclear staining assay showed the rate of apoptosis of MDA-MB-231 cells to increase in response to xanthorrhizol treatment. Immunofluorescence staining using antibody MitoCapture and fluorescein isothiocyanate (FITC)-labeled cytochrome c revealed the possibility of altered mitochondrial transmembrane potential and the release of cytochrome c respectively. This was further confirmed by Western-blotting, where cytochrome c was showed to migrate from mitochondrial fraction to the cytosol fraction of treated MDA-MB-231 cells. Caspase activity assay showed the involvement of caspase-3 and caspase-9, but not caspase-6 or caspase-8 in MDA-MB-231 apoptotic cell death. Subsequently, cleavage of PARP-1 protein is suggested. These data suggest treatment with xanthorrhizol modulates MDA-MB-231 cell apoptosis through the mitochondria-mediated pathway subsequent to the disruption of mitochondrial transmembrane potential, release of cytochrome c, activation of caspase-3 and caspase-9, and the modulation of PARP-1 protein.
Xanthorrhizol is a sesquiterpenoid compound extracted from the rhizome of Curcuma xanthorrhiza. This study investigated the antiproliferative effect and the mechanism of action of xanthorrhizol on human hepatoma cells, HepG2, and the mode of cell death. An antiproliferative assay using methylene blue staining revealed that xanthorrhizol inhibited the proliferation of the HepG2 cells with a 50% inhibition of cell growth (IC50) value of 4.17 +/- 0.053 microg/ml. The antiproliferative activity of xanthorrhizol was due to apoptosis induced in the HepG2 cells and not necrosis, which was confirmed by the Tdt-mediated dUTP nick end labeling (TUNEL) assay. The xanthorrhizol-treated HepG2 cells showed typical apoptotic morphology such as DNA fragmentation, cell shrinkage and elongated lamellipodia. The apoptosis mediated by xanthorrhizol in the HepG2 cells was associated with the activation of tumor suppressor p53 and down-regulation of antiapoptotic Bcl-2 protein expression, but not Bax. The levels of Bcl-2 protein expression decreased 24-h after treatment with xanthorrhizol and remained lower than controls throughout the experiment, resulting in a shift in the Bax to Bcl-2 ratio thus favouring apoptosis. The processing of the initiator procaspase-9 was detected. Caspase-3 was also found to be activated, but not caspase-7. Xanthorrhizol exerts antiproliferative effects on HepG2 cells by inducing apoptosis via the mitochondrial pathway.
In order to attempt isolate the protozoan parasite Neospora caninum, an N. caninum seropositive pregnant Sahiwal Friesian cross heifer from a large-scale dairy farm in Malaysia was kept for observation until parturition at the Veterinary Research Institute, Ipoh. The heifer gave birth to a female calf that was weak, underweight and unable to rise. Precolostral serum from the calf had an N. caninum indirect fluorescent antibody test titre of 1:3200. It died 12 h after birth and necropsy was performed. Brain homogenate from the calf was inoculated into 10 BALB/c mice that were kept for 3 months after which brain tissue from the mice was inoculated onto 24 h fresh monolayer Vero cell lines. The cell cultures were examined daily until growth of intracellular protozoa was observed. DNA of the organisms from the cell cultures was analyzed by PCR and DNA sequencing. DNA fragments of the expected size were amplified from the isolate using N. caninum-specific primers, and sequence analysis of ITS1 clearly identified the isolate as N. caninum. This is the first successful isolation of N. caninum from a bovine in Malaysia, and the isolate is designated Nc-MalB1.
Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.