Displaying publications 161 - 180 of 437 in total

Abstract:
Sort:
  1. Maher S, Choudhary MI, Saleem F, Rasheed S, Waheed I, Halim SA, et al.
    Biology (Basel), 2020 Jul 30;9(8).
    PMID: 32751610 DOI: 10.3390/biology9080197
    Withania coagulans (W. coagulans) is well-known in herbal medicinal systems for its high biological potential. Different parts of the plant are used against insomnia, liver complications, asthma, and biliousness, as well as it is reported to be sedative, emetic, diuretic, antidiabetic antimicrobial, anti-inflammatory, antitumor, hepatoprotective, antihyperglycemic, cardiovascular, immuno-suppressive and central nervous system depressant. Withanolides present in W. coagulans have attracted an immense interest in the scientific field due to their diverse therapeutic applications. The current study deals with chemical and biological evaluation of chloroform, and n-butanol fractions of W. coagulans. The activity-guided fractionation of both extracts via multiple chromatographic steps and structure elucidation of pure isolates using spectroscopies (NMR, mass spectrometry, FTIR and UV-Vis) led to the identification of a new withanolide glycoside, withacogulanoside-B (1) from n-butanol extract and five known withanolides from chloroform extract [withanolid J (2), coagulin E (3), withaperuvin C (4), 27-hydroxywithanolide I (5), and ajugin E (6)]. Among the tested compounds, compound 5 was the most potent α-glucosidase inhibitor with IC50 = 66.7 ± 3.6 µM, followed by compound 4 (IC50: 407 ± 4.5 µM) and compound 2 (IC50: 683 ± 0.94 µM), while no antiglycation activity was observed with the six isolated compounds. Molecular docking was used to predict the binding potential and binding site interactions of these compounds as α-glucosidase inhibitors. Consequently, this study provides basis to discover specific antidiabetic compounds from W. coagulans.
    Matched MeSH terms: Inhibitory Concentration 50
  2. Tahlan S, Ramasamy K, Lim SM, Shah SAA, Mani V, Narasimhan B
    BMC Chem, 2019 Dec;13(1):12.
    PMID: 31384761 DOI: 10.1186/s13065-019-0533-7
    Background: Dihydrofolate reductase (DHFR) is an important target for antimetabolite class of antimicrobials because it participates in purine synthesis. 2-mercaptobenzimidazole (2MBI) has similar structural features as purine nucleotides. Given that benzimidazole and similar heteroaromatics have been broadly examined for their anticancer potential, so, we hereby report the design, synthesis and biological studies (i.e. antimicrobial and anticancer studies) of 2MBI derivatives.

    Methodology: The antimicrobial activity of synthesized 2MBI derivatives were evaluated against Gram positive and Gram negative bacterial species as well as fungal species by tube dilution technique whereas their anticancer activity was assessed against human colorectal carcinoma cell line (HCT116) by Sulforhodamine B (SRB) assay. They were also structurally characterized by IR, NMR, MS and elemental analyses.

    Results discussion and conclusion: The antimicrobial activity findings revealed that compound N1 (MIC
    bs,st,
    ca
     = 1.27, 2.54, 1.27 µM), N8 (MIC
    ec
    = 1.43 µM), N22 (MIC
    kp,an
    = 2.60 µM), N23 and N25 (MIC
    sa
    = 2.65 µM) exhibited significant antimicrobial effects against tested strains, i.e. Gram-positive, Gram-negative (bacterial) and fungal strains. The anticancer screening results demonstrated that compounds N9, N18 (IC50 = 5.85, 4.53 µM) were the most potent compounds against cancer cell line (HCT116) even more than 5-FU, the standard drug (IC50 = 9.99 µM).

    Matched MeSH terms: Inhibitory Concentration 50
  3. Ahmad FB, Ghaffari Moghaddam M, Basri M, Abdul Rahman MB
    Biosci Biotechnol Biochem, 2010;74(5):1025-9.
    PMID: 20460723
    An easy and efficient strategy to prepare betulinic acid esters with various anhydrides was used by the enzymatic synthesis method. It involves lipase-catalyzed acylation of betulinic acid with anhydrides as acylating agents in organic solvent. Lipase from Candida antarctica immobilized on an acrylic resin (Novozym 435) was employed as a biocatalyst. Several 3-O-acyl-betulinic acid derivatives were successfully obtained by this procedure. The anticancer activity of betulinic acid and its 3-O-acylated derivatives were then evaluated in vitro against human lung carcinoma (A549) and human ovarian (CAOV3) cancer cell lines. 3-O-glutaryl-betulinic acid, 3-O-acetyl-betulinic acid, and 3-O-succinyl-betulinic acid showed IC(50)<10 microg/ml against A549 cancer cell line tested and showed better cytotoxicity than betulinic acid. In an ovarian cancer cell line, all betulinic acid derivatives prepared showed weaker cytotoxicity than betulinic acid.
    Matched MeSH terms: Inhibitory Concentration 50
  4. Yuliana ND, Tuarita MZ, Khatib A, Laila F, Sukarno S
    Food Sci Biotechnol, 2020 Jun;29(6):825-835.
    PMID: 32523792 DOI: 10.1007/s10068-019-00725-2
    GC-MS metabolomics was used to discriminate the phytochemicals profile of Indonesian white, red, and black rice brans, and Japanese white rice brans. This technique was used for the first time to identify compounds in rice brans having cytotoxic activity against WiDr colon cancer cells. Orthogonal Projection to the Latent Structure (OPLS) analysis showed that protocatechuic acid (PA) was a discriminating factor found in black rice brans which strongly correlated with its cytotoxicity (IC50 8.53 ± 0.26 µM). Real time-PCR data demonstrated that PA cytotoxicity at different concentrations (1, 5, 10, 25 and 50 µg/mL) was mediated through different pathways. Bcl-2 expression was downregulated at all tested concentrations indicating apoptosis stimulation. At 1-10 ppm concentration, PA activated both intrinsic and extrinsic apoptosis pathways since the expression of p53, Bax, caspase-8, and caspase-9 were upregulated. At a higher dose (25 and 50 µg/mL), PA possibly involved in pyroptosis-mediated pro-inflammatory cell death by upregulating the expression of caspase-1 and caspase-7.
    Matched MeSH terms: Inhibitory Concentration 50
  5. Ali MA, Ismail R, Choon TS, Yoon YK, Wei AC, Pandian S, et al.
    Bioorg Med Chem Lett, 2010 Dec 1;20(23):7064-6.
    PMID: 20951037 DOI: 10.1016/j.bmcl.2010.09.108
    Series of pyrolidine analogues were synthesized and examined as acetylcholinesterase (AChE) inhibitors. Among the compounds, compounds 4k and 6k were the most potent inhibitors of the series. Compound 4k, showed potent inhibitory activity against acetyl cholinesterase enzyme with IC(50) 0.10 μmol/L. Pyrolidine analogues might be potential acetyl cholinesterase agents for AD.
    Matched MeSH terms: Inhibitory Concentration 50
  6. Elsayed EA, El Enshasy H, Wadaan MA, Aziz R
    Mediators Inflamm, 2014;2014:805841.
    PMID: 25505823 DOI: 10.1155/2014/805841
    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents.
    Matched MeSH terms: Inhibitory Concentration 50
  7. Abdelkader Hassani, Siti Aslina Hussain?, Abdullah, N., Suryani Kamarudin, Rozita Rosli
    MyJurnal
    The present work investigated the antioxidant properties and antihypertensive activity of
    magnesium orotate (MgOr) using various established in vitro assays, such as β-carotene
    bleaching activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and nitric oxide scavenging activity as well as angiotensin converting enzyme (ACE) inhibitory activity. Magnesium orotate
    nanoparticles (MgOrGANPs) were prepared using the gum arabic (GA) as stabiliser coatings
    for nanoparticles through freeze-drying method. The in vitro cytoxicity of MgOrGANPs
    against human breast cancer MCF7, liver cancer HepG2, and colon cancer HT29 was investigated. The nitric oxide (NO) and DPPH scavenging assays of MgOrGANPs showed a
    dose-dependent trend, while 500 and 200 µL/mL were significantly more effective than the
    other concentrations with an IC50 of 89.56 µg/mL and 63.22% DPPH scavenging capacity
    respectively. The exposure of human cancer cells to MgOrGANPs at 1.56 – 1,000 µg/mL
    using 3-)4,5-dimethylthiazol-2-yl(2,5-diphenyl tetrazolium bromide (MTT) inhibited the
    growth of cell lines examined in a dose-dependent manner. Hence, MgOrGANPs may have
    great potential to be applied for cancer treatments.
    Matched MeSH terms: Inhibitory Concentration 50
  8. Sallehuddin, N. A., Azizah Abdul Hamid, Salleh, S. Z., Nazia Abdul Majid, Hani Hafeeza Halim, Nurul Shazini Ramli, et al.
    MyJurnal
    In the present work, aqueous ethanolic (60% ethanol) extracts from selected Malaysian herbs
    including Murraya koenigii L. Spreng, Lawsonia inermis L., Cosmos caudatus Kunth, Piper
    betle L., and P. sarmentosum Roxb. were evaluated for their ergogenic, anti-diabetic and
    antioxidant potentials. Results showed that the analysed herbs had ergogenic property and
    were able to activate 5'AMP-activated protein kinase (AMPK) in a concentration dependant
    manner. The highest AMPK activation was exhibited by M. koenigii extract which showed no
    significant (p > 0.05) difference with green tea (positive control). For anti-diabetic potential,
    the highest α-glucosidase inhibition was exhibited by M. koenigii extract with IC50 of 43.35
    ± 7.5 µg/mL, which was higher than acarbose (positive control). The determinations of free
    radical scavenging activity and total phenolics content (TPC) indicated that the analysed herbs
    had good antioxidant activity. However, C. caudatus extract showed superior antioxidant
    activity with IC50 against free radical and TPC of 21.12 ± 3.20 µg/mL and 221.61 ± 7.49 mg
    GAE/g, respectively. RP-HPLC analysis established the presence of flavonoids in the herbs
    wherein L. inermis contained the highest flavonoid (catechin, epicatechin, naringin and rutin)
    content (668.87 mg/kg of extract). Correlations between the analyses were conducted, and
    revealed incoherent trends. Overall, M. koenigii was noted to be the most potent herb for
    enhancement of AMPK activity and α-glucosidase inhibition but exhibited moderate antioxidant activity. These results revealed that the selected herbs could be potential sources of
    natural ergogenic and anti-diabetic/antioxidant agents due to their rich profile of phenolics.
    Further analysis in vivo should be carried out to further elucidate the mechanism of actions of
    these herbs as ergogenic aids and anti-diabetic/antioxidant agents.
    Matched MeSH terms: Inhibitory Concentration 50
  9. Tabassam, Q., Mehmood, T., Anwar, F., Saari, N., Qadir, R.
    MyJurnal
    The present work studies the profiling of phenolic bioactive and in vitro biological (anticancer, antioxidant, and antimicrobial) activities of different solvent extracts from Withania
    somnifera fruit. Anticancer activity was performed using potato-disc assay and Agrobacterium tumefaciens. While antibacterial and antifungal evaluation was done by using disc diffusion method against bacterial (Staphylococcus aureus, S. epidermidis, Escherichia coli, and
    Klebsiella pneumonia) and fungal (Aspergillus flavus and Fusarium oxysporum) strains.
    Among different extraction solvents used, n-hexane extract exhibited the highest inhibition of
    tumour initiation (64%), whereas ethyl acetate (15%) was the lowest by using potato-disc
    assay. Highest total phenolic and total flavonoid contents were noted for methanolic (69.10
    GAE mg/g DW%) and n-hexane (29.45 CE mg/g DW%) extracts, respectively. For antioxidant potential, 2,2,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging (IC50) and reducing power EC50 were noted to be superior (0.6 and 2.0 mg/mL, respectively) for n-hexane
    extract. All the tested extracts showed considerable antibacterial and antifungal activity with
    the highest growth inhibition zones for K. pneumoniae (31.70 mm) and A. flavus (27.09 mm)
    were shown by n-hexane extract. High Performance Liquid Chromatographic (HPLC) analysis of individual phenolics (gallic acid, 2,288.48 mg/kg) indicated the highest contents of these
    compounds in n-hexane extract, which might explain the potent biological activities of this
    extract. Our findings revealed that the bioactive present in the tested fruit had significant
    potential as anticancer, antibacterial, and antifungal agents. Further studies are needed to
    elucidate the mechanism of actions of isolated bioactive against specific diseases such as
    cancer, especially in the case of n-hexane fraction.
    Matched MeSH terms: Inhibitory Concentration 50
  10. Subramanian AP, Jaganathan SK, Mandal M, Supriyanto E, Muhamad II
    World J Gastroenterol, 2016 Apr 21;22(15):3952-61.
    PMID: 27099438 DOI: 10.3748/wjg.v22.i15.3952
    AIM: To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells.
    METHODS: The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2',7'-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1.
    RESULTS: MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment.
    CONCLUSION: These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells.
    KEYWORDS: Apoptosis; Cell cycle; Colon cancer; Gallic acid; Lipid layer break; Reactive oxygen species
    Matched MeSH terms: Inhibitory Concentration 50
  11. Mohd Yusop AY, Xiao L, Fu S
    Drug Test Anal, 2021 May;13(5):953-964.
    PMID: 32959983 DOI: 10.1002/dta.2926
    The surge in the consumption of food products containing herbal aphrodisiacs has driven their widespread adulteration. A rapid screening strategy is, therefore, warranted to curb this problem. This study established an enzyme inhibition assay to screen phosphodiesterase 5 (PDE5) inhibitors as adulterants in selected food products. Fluorescein-labelled cyclic-3',5'-guanosine monophosphate was utilised as substrates for the PDE5A1 enzyme, aided by the presence of nanoparticle phosphate-binding beads on their fluorescence polarisation. The sample preparation was optimised to improve the enzyme inhibition efficiency and applied to calculate the threshold values of six blank food matrices. The assay was validated using sildenafil, producing an IC50 of 4.2 nM. The applicability of the assay procedure was demonstrated by screening 55 distinct food samples. The results were subsequently verified using confirmatory liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis. Altogether, 49 samples inhibited the PDE5 enzyme above the threshold values (75.7%-105.5%) and were registered as potentially adulterated samples. The remaining six samples were marked as nonadulterated with percentage inhibition below the threshold values (-3.3%-18.2%). The LC-HRMS analysis agreed with the assay results for all food products except for the instant coffee premix (ICP) samples. False-positive results were obtained for the ICP samples at 32% (8/25), due to possible PDE5 inhibition by caffeine. Contrarily, all other food samples were found to produce 0% (0/30) false-positive or false-negative results. The broad-based assay, established via a simple mix-incubate-read format, exhibited promising potential for high-throughput screening of PDE5 inhibitors in various food products, except those with naturally occurring phosphodiesterase inhibitors such as caffeine.
    Matched MeSH terms: Inhibitory Concentration 50
  12. Haezam FN, Awang N, Kamaludin NF, Mohamad R
    Saudi J Biol Sci, 2021 May;28(5):3160-3168.
    PMID: 34025187 DOI: 10.1016/j.sjbs.2021.02.060
    Context: Diphenyltin(IV) diallyldithiocarbamate compound (Compound 1) and triphenyltin(IV) diallyldithiocarbamate compound (Compound 2) are two newly synthesised compounds of organotin(IV) with diallyldithiocarbamate ligands.

    Objective: To assess the cytotoxic effects of two synthesised compounds against HT-29 human colon adenocarcinoma cells and human CCD-18Co normal colon cells.

    Materials and methods: Two successfully synthesised compounds were characterised using elemental (carbon, hydrogen, nitrogen, and sulphur) analysis, Fourier-Transform Infrared (FTIR), and 1H, 13C 119Sn Nucleus Magnetic Resonance (NMR) spectroscopies. The single-crystal structure of both compounds was determined by X-ray single-crystal analysis. The cytotoxicity of the compounds was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazholium bromide (MTT) assay upon 24 h of treatment. While the mode of cell death was determined based on the externalisation of phosphatidylserine using a flow cytometer.

    Results: The elemental analysis data of the two compounds showed an agreement with the suggested formula of (C6H5)2Sn[S2CN(C3H5)2]2 for Compound 1 and (C6H5)3Sn[S2CN(C3H5)2] for Compound 2. The two major peaks of infrared absorbance, i.e., ν(C = N) and ν(C = S) were detected at the range of 1475-1479 cm-1 and 972-977 cm-1, respectively. The chemical shift of carbon in NCS2 group for Compound 1 and 2 were found at 200.82 and 197.79 ppm. The crystal structure of Compound 1 showed that it is six coordinated and crystallised in monoclinic, P21/c space group. While the crystal structure of Compound 2 is five coordinated and crystallised in monoclinic, P21/c space group. The cytotoxicity (IC50) of the two compounds against HT-29 cell were 2.36 μM and 0.39 μM. Meanwhile, the percentage of cell death modes between 60% and 75% for compound 1 and compound 2 were mainly due to apoptosis, suggesting that both compounds induced growth arrest.

    Conclusion: Our study concluded that the synthesised compounds showed potent cytotoxicity towards HT-29 cell, with the triphenyltin(IV) compound showing the highest effect compared to diphenyltin(IV).

    Matched MeSH terms: Inhibitory Concentration 50
  13. Alkadi KAA, Ashraf K, Adam A, Shah SAA, Taha M, Hasan MH, et al.
    J Pharm Bioallied Sci, 2020 12 21;13(1):116-122.
    PMID: 34084057 DOI: 10.4103/jpbs.JPBS_279_19
    Objectives: The aim of the present study was to isolate and evaluate cytotoxicity and anti-inflammatory activities of new novel compounds isolated from Prismatomeris glabra.

    Materials and Methods: Dried root of P. glabra was extracted under reflux with methyl alcohol, fractionated through the vacuum liquid chromatography technique, and evaporated and then purified the compounds using column chromatography and preparative thin-layer chromatography. THP-1 cells were treated with amentoflavone, 5,7,4'-hydroxyflavonoid, and stigmasterol with various concentrations (0-30 µg/mL) and then incubated with MTS reagent for 2h. Treatment was done for 24, 48, and 72h. Then, effects of these compounds were also tested on PGE2, TNF-α, and IL-6 expression in human THP-1-derived macrophage cells for 24h.

    Results: Three new compounds such as amentoflavone, 5,7,4'-hydroxyflavonoid, and stigmasterol were isolated. After 24h of incubation, a significant decrease in cell viability was reported with IC50 values of amentoflavone, 5,7,4'- hydroxyflavonoid, and stigmasterol (21 µg/mL ≡ 38 M), (18 µg/mL ≡ 66 M) and (20 µg/mL ≡ 48.5 M), respectively. Whereas for 48 and 72h treatment showed a less decreased cell viability compared with 24h treatment. These compounds also showed a significant reduction in the production of TNF-α, IL-6, and PGE2 in a dose-dependent manner.

    Conclusions: The isolated new compounds showed significant cytotoxicity and anti-inflammatory effects.

    Matched MeSH terms: Inhibitory Concentration 50
  14. Dahari DE, Salleh RM, Mahmud F, Chin LP, Embi N, Sidek HM
    Trop Life Sci Res, 2016 Aug;27(2):53-71.
    PMID: 27688851 MyJurnal DOI: 10.21315/tlsr2016.27.2.5
    Exploiting natural resources for bioactive compounds is an attractive drug discovery strategy in search for new anti-malarial drugs with novel modes of action. Initial screening efforts in our laboratory revealed two preparations of soil-derived actinomycetes (H11809 and FH025) with potent anti-malarial activities. Both crude extracts showed glycogen synthase kinase 3β (GSK3β)-inhibitory activities in a yeast-based kinase assay. We have previously shown that the GSK3 inhibitor, lithium chloride (LiCl), was able to suppress parasitaemia development in a rodent model of malarial infection. The present study aims to evaluate whether anti-malarial activities of H11809 and FH025 involve the inhibition of GSK3β. The acetone crude extracts of H11809 and FH025 each exerted strong inhibition on the growth of Plasmodium falciparum 3D7 in vitro with 50% inhibitory concentration (IC50) values of 0.57 ± 0.09 and 1.28 ± 0.11 µg/mL, respectively. The tested extracts exhibited Selectivity Index (SI) values exceeding 10 for the 3D7 strain. Both H11809 and FH025 showed dosage-dependent chemo-suppressive activities in vivo and improved animal survivability compared to non-treated infected mice. Western analysis revealed increased phosphorylation of serine (Ser 9) GSK3β (by 6.79 to 6.83-fold) in liver samples from infected mice treated with H11809 or FH025 compared to samples from non-infected or non-treated infected mice. A compound already identified in H11809 (data not shown), dibutyl phthalate (DBP) showed active anti-plasmodial activity against 3D7 (IC50 4.87 ± 1.26 µg/mL which is equivalent to 17.50 µM) and good chemo-suppressive activity in vivo (60.80% chemo-suppression at 300 mg/kg body weight [bw] dosage). DBP administration also resulted in increased phosphorylation of Ser 9 GSK3β compared to controls. Findings from the present study demonstrate that the potent anti-malarial activities of H11809 and FH025 were mediated via inhibition of host GSK3β. In addition, our study suggests that DBP is in part the bioactive component contributing to the anti-malarial activity displayed by H11809 acting through the inhibition of GSK3β.
    Matched MeSH terms: Inhibitory Concentration 50
  15. Nor Hazwani Ahmad, Rohanizah Abdul Rahim, Ishak Mat
    Trop Life Sci Res, 2010;21(2):-.
    MyJurnal
    Research on natural products has been widely used as a strategy to discover new drugs with potential for applications in complementary medicines because they have fewer side effects than conventional drugs. The aim of the present study was to evaluate the in vitro cytotoxic effects of crude aqueous Catharanthus roseus extract on Jurkat cells and normal peripheral blood mononuclear cells (PBMCs). The aqueous extract was
    standardised to vinblastine by high performance liquid chromatography (HPLC) and was used to determine cytotoxicity by the MTS [3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. DNA fragmentation assay was employed to determine if cell death was due to apoptosis. The results showed that the aqueous extract induced cell death of Jurkat cells at 24, 48 and 72 hours posttreatment in a time- and dose-dependent manner. However, cells treated at 48 and 72 hours produced higher cytotoxic effects with half maximal inhibitory concentration (IC50)values of 2.55 µg/ml and 2.38 µg/ml, respectively. In contrast, the extract induced normal PBMC proliferation, especially after 24 hours treatment with 1000 µg/ml. This result indicates that the C. roseus crude aqueous extract showed differential effects of inhibiting the proliferation of the Jurkat cell line and promoting the growth of PBMCs. These data suggest that the extract may be applicable for modulating the normal and transformed immune cells in leukaemia patients.
    Matched MeSH terms: Inhibitory Concentration 50
  16. Salleh WMNHW, Anuar MZA, Khamis S, Nafiah MA, Sul'ain MD
    Nat Prod Res, 2021 Jul;35(13):2279-2284.
    PMID: 31544509 DOI: 10.1080/14786419.2019.1669027
    The chemical composition of the essential oil of Knema kunstleri Warb. (Myristicaceae) was investigated for the first time. The essential oil was obtained by hydrodistillation and fully characterized by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 36 components were identified in the essential oil, which made up 91.7% of the total oil. The essential oil is composed mainly of β-caryophyllene (23.2%), bicyclogermacrene (9.6%), δ-cadinene (7.3%), α-humulene (5.7%), and germacrene D (4.3%). The essential oil showed moderate activity towards DPPH free-radical scavenging and lipoxygenase inhibition. To the best of our knowledge, this is the first study of the composition and bioactivities of the essential oil report concerning the genus Knema.
    Matched MeSH terms: Inhibitory Concentration 50
  17. Trop Biomed, 2021 Jun 01;38(2):40-47.
    PMID: 33973571 DOI: 10.47665/tb.38.2.035
    The reduced efficacy of the mainstay antimalarial drugs due to the widespread of drugresistant Plasmodium falciparum has necessitated efforts to discover new antimalarial drugs with new targets. Quercus infectoria (Olivier) has long been used to treat various ailments including fever. The acetone extract of the plant galls has recently been reported to have a promising antimalarial activity in vitro. This study was aimed to determine the effect of the Q. infectoria gall acetone crude extract on pH of the digestive vacuole of Plasmodium falciparum. A ratiometric fluorescent probe, fluorescein isothiocyanate-dextran (FITC-dextran) was used to facilitate a quantitative measurement of the digestive vacuole pH by flow cytometry. Mid trophozoite stage malaria parasites grown in resealed erythrocytes containing FITC-dextran were treated with different concentrations of the acetone extract based on the 50% inhibitory concentration (IC50). Saponin-permeabilized parasites were analyzed to obtain the ratio of green/yellow fluorescence intensity (Rgy) plotted as a function of pH in a pH calibration curve of FITC-dextran. Based on the pH calibration curve, the pH of the digestive vacuole of the acetone extract-treated parasites was significantly altered (pH values ranged from 6.35- 6.71) in a concentration-dependent manner compared to the untreated parasites (pH = 5.32) (p < 0.001). This study provides a valuable insight into the potential of the Q. infectoria galls as a promising antimalarial candidate with a novel mechanism of action.
    Matched MeSH terms: Inhibitory Concentration 50
  18. Tan, B.L., Suhaniza, H.J., Lai, C. C., Norazalina, S., Roselina, K., Norhaizan, M.E.
    MyJurnal
    Temukut, or brewers’ rice, is a mixture of broken rice, rice bran, and rice germ. Extensive studies have been conducted on rice bran, which possesses various health benefits. Temukut, however has been less well studied. The present study aimed to investigate the antioxidant and growth inhibition properties of temukut extract using colon cancer (HT-29), ovary cancer (Caov-3), and liver cancer (HepG2) cell lines. The antioxidant activity was determined by the β-carotene bleaching assay, analysis of the DPPH radical scavenging capacity, and a FRAP assay. The total phenolic compounds, oryzanol, vitamin E, and phytic acid levels in temukut were also investigated. The antiproliferative activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. There was a significant difference in the cytotoxicity of two types of temukut extract (water and methanol) for HT-29 and Caov-3 cells (p < 0.05) but not for HepG2 cells. The HepG2 cell line is the least sensitive to temukut, (IC50 = 55.30 μg/mL), whereas the highest sensitivity was observed in Caov-3 cells (IC50 =36.67 μg/mL). No cytotoxic effect of temukut was observed on normal cells (BalBlc3T3). Although the content of the phytochemicals studied (total phenolic compounds, vitamin E, oryzanol, and phytic acid) in temukut was lower than that in rice bran, as has been previously reported, the present study demonstrated temukut’s potential to inhibit the proliferation of HT-29, Caov-3, and HepG2 cells.
    Matched MeSH terms: Inhibitory Concentration 50
  19. Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S
    Biomed Pharmacother, 2017 Jul;91:366-377.
    PMID: 28463800 DOI: 10.1016/j.biopha.2017.04.112
    Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis.
    Matched MeSH terms: Inhibitory Concentration 50
  20. Zamani A, Mat Jusoh SA, Al-Jamal HA, Sul'ain MD, Johan MF
    Asian Pac J Cancer Prev, 2016 11 01;17(11):4857-4861.
    PMID: 28030911
    Background: Imatinib mesylate, a tyrosine kinase inhibitor specifically targeting the BCR/ABL fusion protein, induces hematological remission in patients with chronic myeloid leukemia (CML). However, the majority of CML patients treated with imatinib develop resistance with prolonged therapy. Dendrophthoe pentandra (L.) Miq. is a Malaysian mistletoe species that has been used as a traditional treatment for several ailments such as smallpox, ulcers, and cancers. Methods: We developed a resistant cell line (designated as K562R) by long-term co-culture of a BCR/ ABL positive CML cell line, K562, with imatinib mesylate. We then investigated the anti-proliferative effects of D. pentandra methanol extract on parental K562 and resistant K562R cells. Trypan blue exclusion assays were performed to determine the IC50 concentration; apoptosis and cell cycle analysis were conducted by flow cytometry. Results: D. pentandra extract had greater anti-proliferative effects towards K562R (IC50= 192 μg/mL) compared to K562 (500 μg/ mL) cells. Upon treatment with D. pentandra extract at the IC50. concentration: K562 but not K562R demonstrated increase in apoptosis and cell cycle arrest in the G2/M phase. Conclusion: D. pentandra methanol extract exerts potent anti-proliferative effect on BCR/ABL positive K562 cells.
    Matched MeSH terms: Inhibitory Concentration 50
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links