Displaying publications 161 - 180 of 306 in total

Abstract:
Sort:
  1. Khan MB, Nisar H, Ng CA, Yeap KH, Lai KC
    Microsc Microanal, 2017 12;23(6):1130-1142.
    PMID: 29212566 DOI: 10.1017/S1431927617012673
    Image processing and analysis is an effective tool for monitoring and fault diagnosis of activated sludge (AS) wastewater treatment plants. The AS image comprise of flocs (microbial aggregates) and filamentous bacteria. In this paper, nine different approaches are proposed for image segmentation of phase-contrast microscopic (PCM) images of AS samples. The proposed strategies are assessed for their effectiveness from the perspective of microscopic artifacts associated with PCM. The first approach uses an algorithm that is based on the idea that different color space representation of images other than red-green-blue may have better contrast. The second uses an edge detection approach. The third strategy, employs a clustering algorithm for the segmentation and the fourth applies local adaptive thresholding. The fifth technique is based on texture-based segmentation and the sixth uses watershed algorithm. The seventh adopts a split-and-merge approach. The eighth employs Kittler's thresholding. Finally, the ninth uses a top-hat and bottom-hat filtering-based technique. The approaches are assessed, and analyzed critically with reference to the artifacts of PCM. Gold approximations of ground truth images are prepared to assess the segmentations. Overall, the edge detection-based approach exhibits the best results in terms of accuracy, and the texture-based algorithm in terms of false negative ratio. The respective scenarios are explained for suitability of edge detection and texture-based algorithms.
    Matched MeSH terms: Sewage
  2. Khalid NA, Rajandas H, Parimannan S, Croft LJ, Loke S, Chong CS, et al.
    3 Biotech, 2019 Oct;9(10):364.
    PMID: 31588388 DOI: 10.1007/s13205-019-1892-4
    Empty fruit bunch (EFB) and palm oil mill effluent (POME) are the major wastes generated by the oil palm industry in Malaysia. The practice of EFB and POME digester sludge co-composting has shown positive results, both in mitigating otherwise environmentally damaging waste streams and producing a useful product (compost) from these streams. In this study, the bacterial ecosystems of 12-week-old EFB-POME co-compost and POME biogas sludge from Felda Maokil, Johor were analysed using 16S metagenome sequencing. Over ten phyla were detected, with Chloroflexi being the predominant phylum, representing approximately 53% of compost and 23% of the POME microbiome reads. The main bacterial lineage found in the compost and POME was Anaerolinaceae (Chloroflexi) with 30% and 18% of the total gene fragments, respectively. The significant differences between compost and POME communities were abundances of Syntrophobacter, Sulfuricurvum and Coprococcus. No methanogens were identified due to the bias in general 16S primers to eubacteria. The preponderance of anaerobic species in the compost and high abundance of secondary metabolite fermenting bacteria is due to an extended composting time, with anaerobic collapse of the pile due to the tropical heat. Predictive functional profiles of the metagenomes using 16S rRNA marker genes suggest that the presence of enzymes involved in degradation of polysaccharides such as glucoamylase, endoglucanase and arabinofuranosidase, all of which were strongly active in POME. Eubacterial species associated with cellulytic methanogenesis were present in both samples.
    Matched MeSH terms: Sewage
  3. Khairuddin Mohamad Kontol, Ismail Sulaiman, Faizal Azrin Abdul Razalim
    MyJurnal
    Sludge and scales produced during oil and gas production contain enhanced naturally occurring
    radioactive material (NORM). Sludge and scales are under the jurisdiction of Department of
    Environment (DOE) and also Atomic Energy Licensing Board (AELB). AELB has issued a
    guideline regarding the disposal of sludge and scales as in its guideline (LEM/TEK/30 SEM.2,
    1996). In this guideline, Radiological Impact Assessment (RIA) should be carried out on all
    proposed disposals and has to demonstrate that no member of public will be exposed to more than
    1 mSv/y. This paper presented RIA analysis using RESRAD computer code for the disposal of
    treated sludge. RESRAD (RESidual RADioactive) developed by Argonne National Laboratory is to
    estimate radiation doses and risks from residual radioactive materials. The dose received by the
    member of public is found to be well below the stipulated limit.
    Matched MeSH terms: Sewage
  4. Khairuddin Mohamad Kontol, Ismail Sulaiman
    MyJurnal
    A study to determine whether Radiological Impact Assessment (RIA) is needed for landfill disposal of treated sludge (slag) from oil and gas industries has been carried out. Radioactivity level of slag and soil samples have been measured using gamma spectrometry system and its Total Activity Concentration (TAC) has been calculated. It was found that TAC (inclusive background) was within the control limit set by the AELB i.e. 3 Bq/g as stipulated in LEM/TEK 58 (AELB, 2009). Therefore, as a result from this study, RIA is not required and the allocated area can be used for the landfill disposal of treated sludge (slag).
    Matched MeSH terms: Sewage
  5. Kawai M, Nagao N, Tajima N, Niwa C, Matsuyama T, Toda T
    Bioresour Technol, 2014 Apr;157:174-80.
    PMID: 24556370 DOI: 10.1016/j.biortech.2014.01.018
    Influence of the labile organic fraction (LOF) on anaerobic digestion of food waste was investigated in different S/I ratio of 0.33, 0.5, 1.0, 2.0 and 4.0g-VSsubstrate/g-VSinoculum. Two types of substrate, standard food waste (Substrate 1) and standard food waste with the supernatant (containing LOF) removed (Substrate 2) were used. Highest methane yield of 435ml-CH4g-VS(-1) in Substrate 1 was observed in the lowest S/I ratio, while the methane yield of the other S/I ratios were 38-73% lower than the highest yield due to acidification. The methane yields in Substrate 2 were relatively stable in all S/I conditions, although the maximum methane yield was low compared with Substrate 1. These results showed that LOF in food waste causes acidification, but also contributes to high methane yields, suggesting that low S/I ratio (<0.33) is required to obtain a reliable methane yield from food waste compared to other organic substrates.
    Matched MeSH terms: Sewage
  6. Karami N, Mohammadi P, Zinatizadeh A, Falahi F, Aghamohammadi N
    Ultrason Sonochem, 2018 Sep;46:89-98.
    PMID: 29739516 DOI: 10.1016/j.ultsonch.2018.04.009
    The biomass concentration of conventional activated sludge (CAS) process due to low sludge sedimentation in clarifiers is limited to 3000 mg/L. In this study, high-frequency ultrasound wave (1.8 MHz) was applied to enhance the CAS process performance using high Mixed Liquor Suspended Solid (MLSS) concentration. The study conducted using a pilot scale CAS bioreactor (with and without ultrasound) and their performance for treating a hospital wastewater were compared. Experimental conditions were designed based on a Central Composite Design (CCD). The sets of data analyzed, modeled and optimized using Response Surface Methodology (RSM). The effect of MLSS concentration 3000-8000 mg/L and hydraulic retention time (HRT) 2-8 h are considered as operating variables to investigate on process responses. The obtained results showed that high-frequency ultrasound was significantly decreased the sludge volume index (SVI) 50% and effluent turbidity about 88.5% at high MLSS. Also, observed that COD removal of both systems was nearly similar, as the maximum COD removal for sonicated and non-sonicated systems were 92 and 92.5% respectively. However, this study demonstrates that the ultrasound irradiation has not had any negative effect on the microbial activity.
    Matched MeSH terms: Sewage*
  7. Kamarudin SK, Shamsul NS, Ghani JA, Chia SK, Liew HS, Samsudin AS
    Bioresour Technol, 2013 Feb;129:463-8.
    PMID: 23266847 DOI: 10.1016/j.biortech.2012.11.016
    The production of methanol from agricultural, forestry, livestock, poultry, and fishery waste via pyrolysis was investigated. Pyrolysis was conducted in a tube furnace at 450-500 °C. Sugarcane bagasse showed the methanol production (5.93 wt.%), followed by roots and sawdust with 4.36 and 4.22 wt.%, respectively. Animal waste offered the lowest content of methanol, as only 0.46, 0.80, and 0.61 wt.% were obtained from fishery, goat, and cow waste, respectively. It was also observed that the percentage of methanol increased with an increase in volatile compounds while the percentage of ethanol increased with the percentage of ash and fix carbon. The data indicate that, pyrolysis is a means for production of methanol and ethanol after further optimization of the process and sample treatment.
    Matched MeSH terms: Sewage/chemistry*
  8. Kamal Haikal Mat Rabi, Amry Khursany Ismail, Mohd Samsul Samsuddin, Manisha Zauri Abdul Wahid, Zarina Mohd Zamawi, Ravindran Thayan
    MyJurnal
    Introduction: Poliomyelitis is an incapacitating and highly infectious disease which effect mostly young children. It is caused by one of the three serotypes of polioviruses (PV) and transmitted through faecal-oral route hence making the disease quite pertinent to the lower and middle class society or under-immunized population. This surveillance is one of the strategy included by WHO in the “Eradication, Integration and Certification: The Endgame Strategy 2019-2023” as a supplement to AFP surveillance by which it could be more sensitive to detect low circulation of WPV and circulating vaccine derived poliovirus (cVDPV). Methods: Routine collection and testing of representative environmental surveillance are carried out in the National Polio Laboratory. The specimens are collected from designated locations draining target populations at increased risk of poliovirus transmission using the grab method once a month and processed according to WHO standard protocol. Polioviruses were identified by real time reverse transcriptase polymerase chain reaction (rRT-PCR) for intratypic differentiation (ITD) and vaccine derived poliovirus (VDPV) whereas non-polio enteroviruses (NPEVs) were identified by PCR and sequencing. Results: From 2012 to 2019, results showed various isolation of PVs and NPEVs. A total of 12 sewage disposal plants located in urban highly populated areas in Kuala Lumpur (3), Selangor (5), Sabah (3 ) and Negeri Sembilan (1) were investigated. A total of 22 Sabin-like PVs were isolated consisting of 3 PV1, 8 PV2 and 11 PV3 thus indicated that in Malaysia even though PVs were existed in environment, but all of them were Sabin-Like viruses and no evidence of imported WPV or VDPV in the sampling sites. Conclusion: Even though Malaysia has been declared as WPV free country in 2000, Environmental Surveillance is very important and crucial in detecting the introduction and silent circulation of WPV and cVDPV before the virus reaches the community.
    Matched MeSH terms: Sewage
  9. Kabbashi N
    J Environ Sci (China), 2011;23(11):1925-8.
    PMID: 22432320
    Available composting models do not describe accurately the dynamics of composting processes. Difficulty in modeling composting processes is attributed mainly to the unpredicted change in process rate caused by change in activation energy value (E). This article presented the results of an attempt made to utilize patterns of change in carbon, nitrogen and temperature profiles to model sewage sludge composting process as a multi-stage process. Results of controlled sewage sludge composting experiments were used in the study. All the experiments were carried out as batch experiments in a 300-liter Horizontal Drum Bioreactor (HDB). Analysis of the profiles of carbon, nitrogen and temperature has indicated that there were clear patterns that could be used to develop simple models of the process, the initial C/N ratio was between 7-8 and the final C/N ratio of the compost in most experiments were found to be around 15.0, indicating the compost was fully matured and could be used safely for agricultural purpose. Electrical conductivity of composting material decreased from 1.83 to 1.67 dS/m, after a period, it increased gradually from 2.01 to 2.23 dS/m and remained at around 2.33 dS/m till the end of composting. It is found that change in the concentration of total carbon can reasonably be described by three constant process rate coefficients (k1, k2, k3). It is found that the process starts with a certain process rate coefficient (k1) and continues until peak temperature is reached, then it reaches lower process (k2) in the declining phase of the thermophilic stage, and finally it proceeds with a faster process rate (k3) when maturation is reached. Change in the concentration of total nitrogen has shown to have the same patterns of change as carbon.
    Matched MeSH terms: Sewage*
  10. Jiang J, Shi Y, Ma NL, Ye H, Verma M, Ng HS, et al.
    Environ Pollut, 2024 Jan 01;340(Pt 1):122830.
    PMID: 37918773 DOI: 10.1016/j.envpol.2023.122830
    The rapid development of the industrial sector has resulted in tremendous economic growth. However, this growth has also presented environmental challenges, specifically due to the substantial sewage generated and its contribution to the early warning of global water resource depletion. Large concentrations of poisonous heavy metals, including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and nickel (Ni), are found in industrial effluent. Therefore, various studies are currently underway to provide effective solutions to alleviate heavy metal ion pollution in sewage. One emerging strategy for sewage pollution remediation is adsorption using wood and its derivatives. This approach is gaining popularity due to the porous structure, excellent mechanical properties, and easy chemical modification of wood. Recent studies have focused on removing heavy metal ions from sewage, summarising and analysing different technical principles, affecting factors, and mainstream chemical modification methods on wood. Furthermore, this work provides insight into potential future development direction for enhanced adsorption of heavy metal ions using wood and its derivatives in wastewater treatment. Overall, this review aims to raise awareness of environmental pollution caused by heavy metals in sewage and promote green environmental protection, low-carbon energy-saving, and sustainable solutions for sewage heavy metal treatment.
    Matched MeSH terms: Sewage
  11. Jia Y, Zheng F, Zhang Q, Duan HF, Savic D, Kapelan Z
    Water Res, 2021 Oct 01;204:117594.
    PMID: 34474249 DOI: 10.1016/j.watres.2021.117594
    Hydraulic modeling of a foul sewer system (FSS) enables a better understanding of the behavior of the system and its effective management. However, there is generally a lack of sufficient field measurement data for FSS model development due to the low number of in-situ sensors for data collection. To this end, this study proposes a new method to develop FSS models based on geotagged information and water consumption data from smart water meters that are readily available. Within the proposed method, each sewer manhole is firstly associated with a particular population whose size is estimated from geotagged data. Subsequently, a two-stage optimization framework is developed to identify daily time-series inflows for each manhole based on physical connections between manholes and population as well as sewer sensor observations. Finally, a new uncertainty analysis method is developed by mapping the probability distributions of water consumption captured by smart meters to the stochastic variations of wastewater discharges. Two real-world FSSs are used to demonstrate the effectiveness of the proposed method. Results show that the proposed method can significantly outperform the traditional FSS model development approach in accurately simulating the values and uncertainty ranges of FSS hydraulic variables (manhole water depths and sewer flows). The proposed method is promising due to the easy availability of geotagged information as well as water consumption data from smart water meters in near future.
    Matched MeSH terms: Sewage
  12. Jagaba AH, Lawal IM, Ghfar AA, Usman AK, Yaro NSA, Noor A, et al.
    Chemosphere, 2023 Oct;339:139620.
    PMID: 37524265 DOI: 10.1016/j.chemosphere.2023.139620
    Agro-industrial biorefinery effluent (AIBW) is considered a highly polluting source responsible for environmental contamination. It contains high loads of chemical oxygen demand (COD), and phenol, with several other organic and inorganic constituents. Thus, an economic treatment approach is required for the sustainable discharge of the effluent. The long-term process performance, contaminant removal and microbial response of AIBW to rice straw-based biochar (RSB) and biochar-based geopolymer nanocomposite (BGC) as biosorbents in an activated sludge process were investigated. The adsorbents operated in an extended aeration system with a varied hydraulic retention time of between 0.5 and 1.5 d and an AIBW concentration of 40-100% for COD and phenol removal under standard conditions. Response surface methodology was utilised to optimize the process variables of the bioreactor system. Process results indicated a significant reduction of COD (79.51%, 98.01%) and phenol (61.94%, 74.44%) for BEAS and GEAS bioreactors respectively, at 1 d HRT and AIBW of 70%. Kinetic model analysis indicated that the Stover-Kincannon model best describes the system functionality, while the Grau model was better in predicting substrate removal rate and both with a precision of between R2 (0.9008-0.9988). Microbial communities examined indicated the abundance of genera, following the biosorbent addition, while RSB and BGC had no negative effect on the bioreactor's performance and bacterial community structure of biomass. Proteobacteria and Bacteroidetes were abundant in BEAS. While the GEAS achieved higher COD and phenol removal due to high Nitrosomonas, Nitrospira, Comamonas, Methanomethylovorans and Acinetobacter abundance in the activated sludge. Thus, this study demonstrated that the combination of biosorption and activated sludge processes could be promising, highly efficient, and most economical for AIBW treatment, without jeopardising the elimination of pollutants or the development of microbial communities.
    Matched MeSH terms: Sewage/chemistry
  13. Isobe T, Takada H, Kanai M, Tsutsumi S, Isobe KO, Boonyatumanond R, et al.
    Environ Monit Assess, 2007 Dec;135(1-3):423-40.
    PMID: 17370135
    A comprehensive monitoring survey for polycyclic aromatic hydrocarbons (PAHs) and phenolic endocrine disrupting chemicals (EDCs) utilizing mussels as sentinel organisms was conducted in South and Southeast Asia as a part of the Asian Mussel Watch project. Green mussel (Perna viridis) samples collected from a total of 48 locations in India, Indonesia, Singapore, Malaysia, Thailand, Cambodia, Vietnam, and the Philippines during 1994-1999 were analyzed for PAHs, EDCs including nonylphenol (NP), octylphenol (OP) and bisphenol A (BPA), and linear alkylbenzenes (LABs) as molecular markers for sewage. Concentrations of NP ranged from 18 to 643 ng/g-dry tissue. The highest levels of NP in Malaysia, Singapore, the Philippines, and Indonesia were comparable to those observed in Tokyo Bay. Elevated concentrations of EDCs were not observed in Vietnam and Cambodia, probably due to the lower extent of industrialization in these regions. No consistent relationship between concentrations of phenolic EDCs and LABs were found, suggesting that sewage is not a major source of EDCs. Concentrations of PAHs ranged from 11 to 1,133 ng/g-dry, which were categorized as "low to moderate" levels of pollution. The ratio of methylphenanthrenes to phenanthrene (MP/P ratio) was >1.0 in 20 out of 25 locations, indicating extensive input of petrogenic PAHs. This study provides a bench-mark for data on the distribution of anthropogenic contaminants in this region, which is essential in evaluating temporal and spatial variation and effect of future regulatory measures.
    Matched MeSH terms: Sewage/chemistry
  14. Isobe KO, Tarao M, Zakaria MP, Chiem NH, Minh le Y, Takada H
    Environ Sci Technol, 2002 Nov 1;36(21):4497-507.
    PMID: 12433157
    This is the first report on fecal pollution using molecular markers in Southeast Asia where serious sewage pollution has occurred. A simple and sensitive analytical method using gas chromatography-mass spectrometry for 10 sterols in various environmental samples was developed to monitor extensive areas of tropical Asia. First, the method was applied to wastewater to confirm that >95% of sterols existed in the particulate phase. Then the approach was applied to a tropical Asian region, Malaysia and Vietnam, with a selection of 59 sampling stations in total. River water and sediment samples were collected and analyzed for chemical markers (coprostanol and other sterols) and microbiological markers (fecal coliforms and fecal streptococci). Particulate coprostanol concentrations ranged from <0.0001 to 13.47 microg/L in tropical river and estuarine waters, indicating severe fecal pollution in populous areas. Coprostanol concentrations in the sediments ranged from 0.005 to 15.5 microg/g-dry. The sedimentary coprostanol concentrations were lower than those reported in some urban areas of industrialized countries. This is probably because frequent heavy rain induces intensive input of eroded soil, which dilutes fecal material in river sediments. The relationship between the concentrations of fecal sterols and bacterial indicators was examined in an attempt to develop public health criteria for coprostanol levels applicable to the tropical region. Coprostanol concentrations of 30-100 ng/L or percent coprostanol levels of 2% corresponded to approximately 1000 fecal coliforms per 100 mL, which is set for secondary contact limit in many countries. These coprostanol concentrations were lower than those proposed as criteria in temperate countries, probably owing to greater survival of bacteria in warmer tropical waters. On the basis of these criteria, extensive monitoring of sediments suggests that poor sanitary conditions exist in most of the urbanized area of Malaysia and in several urban and rural sites in Vietnam.
    Matched MeSH terms: Sewage*
  15. Isobe KO, Zakaria MP, Chiem NH, Minh le Y, Prudente M, Boonyatumanond R, et al.
    Water Res, 2004 May;38(9):2448-58.
    PMID: 15142807
    This paper reports the result of sewage pollution monitoring conducted in South and Southeast Asia during 1998-2003 using linear alkylbenzenes (LABs) as molecular tracers of sewage contamination. Eighty-nine water samples collected from Malaysia, Vietnam, and Japan (Tokyo), and 161 surface sediment samples collected from Tokyo, Thailand, Malaysia, Philippines, Vietnam, Cambodia, Indonesia, and India were analyzed for alkylbenzenes. The concentration range of SigmaLABs in river water particles in Southeast Asia (<0.005-0.913 microg/L) was comparable to or higher than those found in Tokyo (<0.005-0.638 microg/L). I/E ratios (a ratio of internal to external isomers of LABs) in tropical Asian waters were close to the value of LABs in raw sewage ( approximately 1) and much lower than those in secondary effluents (3-5). This suggests that untreated or inadequately treated sewage is discharged into the water. SigmaLABs concentrations in sediments from South and Southeast Asia ranged from <0.002-42.6 microg/g-dry with the highest concentration occurring at several populous cities. Low I/E ratios of the sediments with high SigmaLABs concentrations suggest a heavy load of untreated sewage. Clearly in view of the current data and evidence of the implications of sewage pollution, this paper highlights the necessity of the continuation of water treatment system improvement in tropical Asia.
    Matched MeSH terms: Sewage/analysis; Sewage/chemistry
  16. Ismail Z, Aziz MMA, Mahmood NAN, Ismail S, Umor NA, Faua'ad Syed Muhammad SA
    J Environ Manage, 2018 Nov 15;226:156-162.
    PMID: 30119039 DOI: 10.1016/j.jenvman.2018.08.003
    Oleochemicals industry effluence mainly contains a high chemical oxygen demand (COD) in a range of 6000-20,000 ppm. An effective biological wastewater treatment process must be carried out before wastewater is discharged into the environment. In this study, a submerged bed biofilm reactor (SBBR) was adapted to the biological oleochemical wastewater treatment plant observed in the present study. The effect of wastewater flow rate (100-300 mL/min), Cosmoball® percentage in the SBBR system (25-75%), and percentage of activated sludge (0-50%) were investigated in terms of COD reduction. The Box-Behnken design was used for response surface methodology (RSM) and to create a set of 18 experimental runs, which was needed for optimising the biological oleochemical wastewater treatment. A quadratic polynomial model with estimated coefficients was developed to describe COD reduction patterns. The analysis of variance (ANOVA) shows that the wastewater flow rate was the most effective factor in reducing COD, followed by activated sludge percentage and Cosmoball® carrier percentage. Under the optimum conditions (i.e., a wastewater flow rate of 103.25 mL/min a Cosmoball® carrier percentage of 71.94%, and an activated sludge percentage of 40.50%) a COD reduction of 98% was achieved. Thus, under optimum conditions, as suggested by the BBD, SBBR systems can be used as a viable means of biological wastewater treatment in the oleochemicals industry.
    Matched MeSH terms: Sewage
  17. Ismail B, Teng IL, Muhammad Samudi Y
    Radiat Prot Dosimetry, 2011 Nov;147(4):600-7.
    PMID: 21266370 DOI: 10.1093/rpd/ncq577
    In Malaysia technologically enhanced naturally occurring radioactive materials (TENORM) wastes are mainly the product of the oil and gas industry and mineral processing. Among these TENORM wastes are tin tailing, tin slag, gypsum and oil sludge. Mineral processing and oil and gas industries produce large volume of TENORM wastes that has become a radiological concern to the authorities. A study was carried out to assess the radiological risk related to workers working at these disposal sites and landfills as well as to the members of the public should these areas be developed for future land use. Radiological risk was assessed based on the magnitude of radiation hazard, effective dose rates and excess cancer risks. Effective dose rates and excess cancer risks were estimated using RESRAD 6.4 computer code. All data on the activity concentrations of NORM in wastes and sludges used in this study were obtained from the Atomic Energy Licensing Board, Malaysia, and they were collected over a period of between 5 and 10 y. Results obtained showed that there was a wide range in the total activity concentrations (TAC) of nuclides in the TENORM wastes. With the exception of tin slag and tin tailing-based TENORM wastes, all other TENORM wastes have TAC values comparable to that of Malaysia's soil. Occupational Effective Dose Rates estimated in all landfill areas were lower than the 20 mSv y(-1) permissible dose limit. The average Excess Cancer Risk Coefficient was estimated to be 2.77×10(-3) risk per mSv. The effective dose rates for residents living on gypsum and oil sludge-based TENORM wastes landfills were estimated to be lower than the permissible dose limit for members of the public, and was also comparable to that of the average Malaysia's ordinary soils. The average excess cancer risk coefficient was estimated to be 3.19×10(-3) risk per mSv. Results obtained suggest that gypsum and oil sludge-based TENORM wastes should be exempted from any radiological regulatory control and should be considered radiologically safe for future land use.
    Matched MeSH terms: Sewage/analysis
  18. Islam MS, Phoungthong K, Ismail Z, Othman IK, Shahid S, Ishak DSM, et al.
    PMID: 36644961 DOI: 10.1080/10934529.2022.2148811
    The spreading of sewage sludge from wastewater treatment plants and various industries arouses the growing interest due to the contamination by trace elements. Sludges were collected from one sewage treatment plant and two industries in Dhaka City, Bangladesh to assess physicochemical parameters and total and fraction content of trace elements like Cr, Ni, Cu, As, Cd, Pb, Fe, Mn and Zn in sludges. We evaluated the bioavailability of theses metals by determining their speciation by sequential extraction, each metal being distributed among five fractions: exchangeable fraction, bound to carbonate fraction, Fe-Mn oxide bound fraction, organic matter bound fraction and residual fractions. We found that all the analyzed sludges had satisfactory properties from an agronomic quality point of view. The average concentration (mg/kg) of trace metals in sludge samples were in the following decreasing order Fe (12807) > Cr (200) > Mn (158) > Zn (132) > Cu (68.2) > Ni (42.5) > Pb (36.4) > As (35.1) > Cd (3.7). The results of the sequential extraction showed that Cr, Ni, Cu, Fe and Mn were largely associated with the residual fraction where As, Cd and Pb was dominantly associated with the exchangeable and carbonate bound fractions and Zn showed a considerable proportion in carbonate bound fraction. These results showed that regulations must take into account the bioavailability with regard to the characteristics of the agricultural soils on which sludge will be spread.
    Matched MeSH terms: Sewage/chemistry
  19. Isa MH, Bashir MJK, Wong LP
    Environ Sci Pollut Res Int, 2022 Jun;29(29):44779-44793.
    PMID: 35138542 DOI: 10.1007/s11356-022-19022-3
    In this study, palm oil mill effluent (POME) treated by ultrasonication at optimum conditions (sonication power: 0.88 W/mL, sonication duration: 16.2 min and total solids: 6% w/v) obtained from a previous study was anaerobically digested at different hydraulic retention times (HRTs). The reactor biomass was subjected to metagenomic study to investigate the impact on the anaerobic community dynamics. Experiments were conducted in two 5 L continuously stirred fill-and-draw reactors R1 and R2 operated at 30 ± 2 °C. Reactor R1 serving as control reactor was fed with unsonicated POME with HRT of 15 and 20 days (R1-15 and R1-20), whereas reactor R2 was fed with sonicated POME with the same HRTs (R2-15 and R2-20). The most distinct archaea community shift was observed among Methanosaeta (R1-15: 26.6%, R2-15: 34.4%) and Methanobacterium (R1-15: 7.4%, R2-15: 3.2%). The genus Methanosaeta was identified from all reactors with the highest abundance from the reactors R2. Mean daily biogas production was 6.79 L from R2-15 and 4.5 L from R1-15, with relative methane gas abundance of 85% and 73%, respectively. Knowledge of anaerobic community dynamics allows process optimization for maximum biogas production.
    Matched MeSH terms: Sewage/microbiology
  20. Igwegbe CA, Obiora-Okafo IA, Iwuozor KO, Ghosh S, Kurniawan SB, Rangabhashiyam S, et al.
    Environ Sci Pollut Res Int, 2022 Feb;29(8):11004-11026.
    PMID: 35001268 DOI: 10.1007/s11356-021-17992-4
    Researchers in recent years have utilized a broad spectrum of treatment technologies in treating bakers' yeast production wastewater. This paper aims to review the treatment technologies for the wastewater, compare the process technologies, discuss recent innovations, and propose future perspectives in the research area. The review observed that nanofiltration was the most effective membrane process for the treatment of the effluent (at >95% pollutant rejection). Other separation processes like adsorption and distillation had technical challenges of desorption, a poor fit for high pollutant load and cost limitations. Chemical treatment processes have varying levels of success but they are expensive and produce toxic sludge. Sludge production would be a hurdle when product recovery and reuse are targeted. It is difficult to make an outright choice of the best process for treating the effluent because each has its merits and demerits and an appropriate choice can be made when all factors are duly considered. The process intensification of the industrial-scale production of the bakers' yeast process will be a very direct approach, where the process optimisation, zero effluent discharge, and enhanced recovery of value-added product from the waste streams are important approaches that need to be taken into account.
    Matched MeSH terms: Sewage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links