OBJECTIVES: We aimed to identify study-level and individual-level modifiers of the effect of SQ-LNSs on child hemoglobin (Hb), anemia, and inflammation-adjusted micronutrient status outcomes.
METHODS: We conducted a 2-stage meta-analysis of individual participant data from 13 randomized controlled trials of SQ-LNSs provided to children 6-24 mo of age (n = 15,946). We generated study-specific and subgroup estimates of SQ-LNSs compared with control, and pooled the estimates using fixed-effects models. We used random-effects meta-regression to examine potential study-level effect modifiers.
RESULTS: SQ-LNS provision decreased the prevalence of anemia (Hb < 110 g/L) by 16% (relative reduction), iron deficiency (plasma ferritin < 12 µg/L) by 56%, and iron deficiency anemia (IDA; Hb < 110 g/L and plasma ferritin <12 µg/L) by 64%. We observed positive effects of SQ-LNSs on hematological and iron status outcomes within all subgroups of the study- and individual-level effect modifiers, but effects were larger in certain subgroups. For example, effects of SQ-LNSs on anemia and iron status were greater in trials that provided SQ-LNSs for >12 mo and provided 9 (as opposed to <9) mg Fe/d, and among later-born (than among first-born) children. There was no effect of SQ-LNSs on plasma zinc or retinol, but there was a 7% increase in plasma retinol-binding protein (RBP) and a 56% reduction in vitamin A deficiency (RBP anemia, iron deficiency, and IDA among children across a range of individual, population, and study design characteristics. Policy-makers and program planners should consider SQ-LNSs within intervention packages to prevent anemia and iron deficiency.This trial was registered at www.crd.york.ac.uk/PROSPERO as CRD42020156663.