METHOD: The dispensing system is based on an Arduino circuit breadboard where an ATmega328p microcontroller was pre-installed. To sense the proximity, a light-dependent resistor (LDR) is used where the laser light is to be blocked after the placement of human hands, hence produced a sharp decrease in the LDR sensor value. Once the LDR sensor value exceeds the lower threshold, the pump is actuated by the microcontroller, and the sanitizer dispenses through the nozzle.
RESULTS AND DISCUSSION: A novel design and subsequent fabrication of a low-cost, touchless, automated sanitizer dispenser to be used in public places, was demonstrated. The overall performance of the manufactured device was analyzed based on the cost and power consumption, and environmental factors by deploying it in busy public places as well as in indoor environment in major cities in Bangladesh, and found to be more efficient and cost-effective compared to other dispensers available in the market. A comprehensive discussion on this unique design compared to the conventional ultrasonic and infra-red based dispensers, is presented to show its suitability over the commercial ones. The guidelines of the World Health Organization are followed for the preparation of sanitizer liquid. A clear demonstration of the circuitry connections is presented herein, which facilitates the interested individual to manufacture a cost-effective dispenser device in a relatively short time and use it accordingly. Conclusion: This study reveals that the LDR-based automated hand sanitizer dispenser system is a novel concept, and it is cost-effective compared to the conventional ones. The presented device is expected to play a key role in contactless hand disinfection in public places, and reduce the spread of infectious diseases in society.
METHODS: The trial is conducted in randomly allocated clusters of low- and medium-cost housing located in the Federal Territory of Kuala Lumpur and Putrajaya. The IVM approach combines: targeted outdoor residual spraying with K-Othrine Polyzone, deployment of mosquito traps as auto-dissemination devices, and community engagement activities. The trial includes 300 clusters randomly allocated in a 1:1 ratio. The clusters receive either the preventive IVM in addition to the routine vector control activities or the routine vector control activities only. Epidemiological data from monthly confirmed dengue cases during the study period will be obtained from the Vector Borne Disease Sector, Malaysian Ministry of Health e-Dengue surveillance system. Entomological surveillance data will be collected in 12 clusters randomly selected from each arm. To measure the effectiveness of the IVM approach on dengue incidence, a negative binomial regression model will be used to compare the incidence between control and intervention clusters. To quantify the effect of the interventions on the main entomological outcome, ovitrap index, a modified ordinary least squares regression model using a robust standard error estimator will be used.
DISCUSSION: Considering the ongoing expansion of dengue burden in Malaysia, setting up proactive control strategies is critical. Despite some limitations of the trial such as the use of passive surveillance to identify cases, the results will be informative for a better understanding of effectiveness of proactive IVM approach in the control of dengue. Evidence from this trial may help justify investment in preventive IVM approaches as preferred to reactive case management strategies.
TRIAL REGISTRATION: ISRCTN ISRCTN81915073 . Retrospectively registered on 17 April 2020.
AIM AND METHODS: This study used microcosting methods to determine the cost and health outcomes of living and deceased donor kidney transplantation in adult and pediatric recipients. The perspective used was from the Ministry of Health Malaysia. Cost-effectiveness measures were cost per life year (LY) and cost per quality-adjusted LYs. The time horizon was the lifetime of the transplant recipient from transplant to death.
RESULTS: Records of 206 KT recipients (118 adults and 88 children) were obtained for microcosting. In adults, discounted cost per LY was US $8609(Malaysian Ringgit [RM]29 482) and US $13 209(RM45 234) for living-donor kidney transplant (LKT) and deceased donor kidney transplant (DKT), respectively, whereas in children, it was US $10 485(RM35 905) and US $14 985(RM51 317), respectively. Cost per quality-adjusted LY in adults was US $8826 (RM30 224) for LKT and US $13 592(RM46 546) for DKT. Total lifetime discounted costs of adult transplants were US $119 702 (RM409 921) for LKT, US $147 152 (RM503 922) for DKT. Total costs for pediatric transplants were US $154 841(RM530 252) and US $159 313(RM545 566) for the 2 categories respectively.
CONCLUSIONS: Both LKT and DKT are economically favorable for Malaysian adult and pediatric patients with ESRD and result in improvement in quality of life.
MATERIALS AND METHODS: A total of 8966 voluntary school students aged 13-15 years old were recruited for scoliosis screening. Screening was done by measuring the angle of trunk rotation (ATR) on forward bending test (FBT) using a scoliometer. ATR of 5 degrees or more was considered positive. Positively screened students had standard radiographs done for measurement of the Cobb angle. Cobb angle of >10° was used to diagnose scoliosis. The percentage of radiological assessment referral, prevalence rate and PPV of scoliosis were then calculated.
RESULTS: Percentage of radiological assessment referral (ATR >5°) was 4.2% (182/4381) for male and 5.0% (228/4585) for female. Only 38.0% of those with ATR >5° presented for further radiological assessment. The adjusted prevalence rate was 2.55% for Cobb angle >10°, 0.59% for >20° and 0.12% for >40°. The PPV is 55.8% for Cobb angle >10°, 12.8% for >20° and 2.6% for > 40°.
CONCLUSIONS: This is the largest study of school scoliosis screening in Malaysia. The prevalence rate of scoliosis was 2.55%. The positive predictive value was 55.8%, which is adequate to suggest that the school scoliosis screening programme did play a role in early detection of scoliosis. However, a cost effectiveness analysis will be needed to firmly determine its efficacy.