Displaying publications 161 - 180 of 259 in total

Abstract:
Sort:
  1. Tan NH, Ponnudurai G, Mirtschin PJ
    Toxicon, 1993 Mar;31(3):363-7.
    PMID: 8470140
    The biological properties of adult and juvenile inland taipan (Oxyuranus microlepidotus) snake venoms were examined. The enzymatic activities, intravenous median lethal dose and procoagulant activity of the juvenile venom samples were not significantly different from those of the adult venom samples. Also, the juvenile and adult venoms exhibited similar electrophoretic patterns, indicating that they possessed similar protein composition.
    Matched MeSH terms: In Vitro Techniques
  2. Hashim OH, Shuib AS, Chua CT
    Immunol Invest, 2001 Feb;30(1):21-31.
    PMID: 11419909
    A study on the binding interaction of lectins from Artocarpus heterophyllus (jacalin), Glycine max and Sambucus nigra with standardised quantity of IgA from the IgA nephropathy patients and normal controls was performed. The Glycine max lectin demonstrated higher affinity towards the serum IgA of IgAN patients as compared to normal controls. However, the affinity binding was lower in cases ofjacalin and the Sambucus nigra lectin. When serum samples were treated with neuraminidase, the differential jacalin affinity binding between IgA1 of patients and normal controls was abrogated. Our data are in support of the view that the O-linked oligosaccharide moieties of the patients IgA1 were generally lacking in galactose and sialic acid residues.
    Matched MeSH terms: In Vitro Techniques
  3. Lim SB, Kanthimathi MS, Hashim OH
    Immunol Invest, 1998 Dec;27(6):395-404.
    PMID: 9845424
    The effect of the mannose-binding champedak (Artocarpus integer) lectin-M on the cellular proliferation of murine lymphocytes was investigated in this study. Our data demonstrated that the lectin was the main mitogenic component in the crude extract of the champedak seeds. It stimulated the proliferation of murine T cells at an optimal concentration of 2.5 microg/ml in a 3 day culture. Lectin-M appeared to be a T-cell mitogen as it does not induce significant DNA synthesis when cultured with spleen cells from the nude mouse. In the absence of T cells, the lectin was incapable of inducing resting B cells to differentiate into immunoglobulin secreting plasma cells.
    Matched MeSH terms: In Vitro Techniques
  4. Yusof NZ, Azizul Hasan ZA, Abd Maurad Z, Idris Z
    Cutan Ocul Toxicol, 2018 Jun;37(2):103-111.
    PMID: 28693384 DOI: 10.1080/15569527.2017.1352595
    AIM: To evaluate eye irritation potential of palm-based methyl ester sulphonates (MES) of different chain lengths; C12, C14, C16, C16:18.

    METHODS: The Bovine Corneal Opacity and Permeability test method (BCOP), OECD Test Guideline 437, was used as an initial step to study the inducing effect of palm-based MES on irreversible eye damage. The second assessment involved the use of reconstructed human corneal-like epithelium test method, OECD Test Guideline 492 using SkinEthic™ Human Corneal Epithelium to study the potential effect of palm-based MES on eye irritancy. The palm-based MES were prepared in 10% solution (w/v) in deionized water and tested as a liquid and surfactant test substances whereby both test conducted according to the liquid/surfactant treatment protocol.

    RESULTS: The preliminary BCOP results showed that palm-based MES; C12, C14, C16, C16:18 were not classified as severe eye irritants test substances with in vitro irritancy score between 3 and the threshold level of 55. The second evaluation using SkinEthic™ HCE model showed that palm-based MES; C12, C14, C16, C16:18 and three commercial samples were potentially irritants to the eyes with mean tissue viability ≤ 60% and classified as Category 2 according to United Nations Globally Harmonized System of Classification and Labelling of Chemicals. However, there are some limitations of the proposed ocular irritation classification of palm-based MES due to insolubility of long chain MES in 10% solution (w/v) in deionized water.

    CONCLUSION: Therefore, future studies to clarify the eye irritation potential of the palm-based MES will be needed, and could include; methods to improve the test substance solubility, use of test protocol for solids, and/or inclusion of a benchmark anionic surfactant, such as sodium dodecyl sulphate within the study design.

    Matched MeSH terms: In Vitro Techniques
  5. Yap SK, Zakaria Z, Othman SS, Omar AR
    J Vet Sci, 2018 Mar 31;19(2):207-215.
    PMID: 28693312 DOI: 10.4142/jvs.2018.19.2.207
    Pasteurella multocida serotype B:2 causes hemorrhagic septicemia in cattle and buffalo. The invasion mechanism of the bacterium when invading the bloodstream is unclear. This study aimed to characterize the effects of immunomodulatory molecules, namely dexamethasone and lipopolysaccharide, on the invasion efficiency of P. multocida serotype B:2 toward bovine aortic endothelial cells (BAECs) and the involvement of actin microfilaments in the invasion mechanism. The results imply that treatment of BAECs with lipopolysaccharide at 100 ng/mL for 24 h significantly increases the intracellular bacteria number per cell (p < 0.01) compared with those in untreated and dexamethasone-treated cells. The lipopolysaccharide-treated cells showed a significant decrease in F-actin expression and an increase in G-actin expression (p < 0.001), indicating actin depolymerization of BAECs. However, no significant differences were detected in the invasion efficiency and actin filament reorganization between the dexamethasone-treated and untreated cells. Transmission electron microscopy showed that P. multocida B:2 resided in a vacuolar compartment of dexamethasone-treated and untreated cells, whereas the bacteria resided in cellular membrane of lipopolysaccharide-treated cells. The results suggest that lipopolysaccharide destabilizes the actin filaments of BAECs, which could facilitate the invasion of P. multocida B:2 into BAECs.
    Matched MeSH terms: In Vitro Techniques
  6. Loh YC, Tan CS, Ch'ng YS, Ahmad M, Asmawi MZ, Yam MF
    J Med Food, 2017 Mar;20(3):265-278.
    PMID: 28296594 DOI: 10.1089/jmf.2016.3836
    Recently, a new syndromic disease combination theory of traditional Chinese medicine (TCM) for hypertensive treatment has been introduced. In the wake of this new concept, a new science-based TCM formula that counteracts various syndromes is needed. The objective of this study was to develop such a formula. Five of the most clinically prescribed TCM herbs that work on different syndromes, namely Gastrodia elata, Uncaria rhynchophylla, Pueraria thomsonii, Panax notoginseng, and Alisma orientale, were selected for this study. The fingerprints of these five herbs were analyzed by tri-step Fourier transform infrared spectroscopy. Three different solvents, 95% ethanol, 50% ethanol, and distilled water, were used for the maceration of the herbs and their vasodilatory effects were studied using in vitro precontracted aortic ring model. Among these, the 50% ethanolic extracts of G. elata (GE50) and A. orientale (AO50), and 95% ethanolic extracts of U. rhynchophylla (UR95), P. thomsonii (PT95), and P. notoginseng (PN95) were found to be the most effective for eliciting vasodilation. Thus, these five extracts were used for orthogonal stimulus-response compatibility group studies by using L25 (5(5)) formula. The best combination ratio for GE50, UR95, PT95, PN95, and AO50, which was assigned as Formula 1 (F1), was found at EC0, EC25, EC20, EC20, and EC10, respectively. The vasodilatory effect of the extracts prepared from different extraction methods using F1 ratio was also studied. From the results, the EC50 and Rmax of total 50% ethanolic extract of five herbs using F1 ratio (F1-2) were 0.028 ± 0.005 mg/mL and 101.71% ± 3.64%, with better values than F1 (0.104 ± 0.014 mg/mL and 97.80% ± 3.12%, respectively). In conclusion, the optimum ratio and appropriate extraction method (F1-2) for the new TCM formula were revealed.
    Matched MeSH terms: In Vitro Techniques
  7. Abdullah AM, Rahim TNAT, Hamad WNFW, Mohamad D, Akil HM, Rajion ZA
    Dent Mater, 2018 11;34(11):e309-e316.
    PMID: 30268678 DOI: 10.1016/j.dental.2018.09.006
    OBJECTIVE: To compare the mechanical and biological properties of newly developed hybrid ceramics filled and unfilled polyamide 12 (PA 12) for craniofacial reconstruction via a fused deposition modelling (FDM) framework.

    METHODS: 15wt% of zirconia (ZrO2) as well as 30, 35, and 40wt% of beta-tricalcium phosphate (β-TCP) were compounded with PA 12, followed by the fabrication of filament feedstocks using a single screw extruder. The fabricated filament feedstocks were used to print the impact specimens. The melt flow rate, tensile properties of fabricated filament feedstocks, and 3D printed impact properties of the specimens were assessed using melt flow indexer, universal testing machine, and Izod pendulum tester, respectively. The microstructure of selected filament feedstocks and broken impact specimens were analysed using a field emission scanning electron microscope and universal testing machine. Human periodontal ligament fibroblast cells (HPdLF) were used to evaluate the cytotoxicity of the materials by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid) (MTT) assay.

    RESULTS: Hybrid ceramics filled PA 12 indicated sufficient flowability for FDM 3D printing. The tensile strength of hybrid ceramics filled PA 12 filament feedstocks slightly reduced as compared to unfilled PA 12. However, the tensile modulus and impact strength of hybrid ceramics filled PA 12 increased by 8%-31% and 98%-181%, respectively. A significant increase was also detected in the cell viability of the developed composites at concentrations of 12.5, 25, 50 and 100mg/ml.

    SIGNIFICANCE: The newly developed hybrid ceramics filled PA 12 filament feedstock with improved properties is suitable for an FDM-based 3D printer, which enables the creation of patient-specific craniofacial implant at a lower cost to serve low-income patients.

    Matched MeSH terms: In Vitro Techniques
  8. Yusop SNW, Imran S, Adenan MI, Sultan S
    Steroids, 2020 12;164:108735.
    PMID: 32976918 DOI: 10.1016/j.steroids.2020.108735
    The fungal transformations of medroxyrogesterone (1) were investigated for the first time using Cunninghamella elegans, Trichothecium roseum, and Mucor plumbeus. The metabolites obtained are as following: 6β, 20-dihydroxymedroxyprogesterone (2), 12β-hydroxymedroxyprogesterone (3), 6β, 11β-dihydroxymedroxyprogesterone (4), 16β-hydroxymedroxyprogesterone (5), 11α, 17-dihydroxy-6α-methylpregn-4-ene-3, 20-dione (6), 11-oxo-medroxyprogesterone (7), 6α-methyl-17α-hydroxypregn-1,4-diene-3,20-dione (8), and 6β-hydroxymedroxyprogesterone (9), 15β-hydroxymedroxyprogesterone (10), 6α-methyl-17α, 11β-dihydroxy-5α-pregnan-3, 20-dione (11), 11β-hydroxymedroxyprogesterone (12), and 11α, 20-dihydroxymedroxyprogesterone (13). Among all the microbial transformed products, the newly isolated biotransformed product 13 showed the most potent activity against proliferation of SH-SY5Y cells. Compounds 12, 5, 6, 9, 11, and 3 (in descending order of activity) also showed some extent of activity against SH-SY5Y tumour cell line. The never been reported biotransformed product, 2, showed the most potent inhibitory activity against acetylcholinesterase. Molecular modelling studies were carried out to understand the observed experimental activities, and also to obtain more information on the binding mode and the interactions between the biotransformed products, and enzyme.
    Matched MeSH terms: In Vitro Techniques
  9. Ajay M, Achike FI, Mustafa AM, Mustafa MR
    Diabetes Res Clin Pract, 2006 Jul;73(1):1-7.
    PMID: 16378655 DOI: 10.1016/j.diabres.2005.11.004
    The present work examined ex vivo the acute effect of quercetin on diabetic rat aortic ring reactivity in response to endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) relaxants, and to the alpha(1)-adrenergic agonist phenylephrine (PE). Responses were compared to those of aortic rings from age- and sex-matched euglycemic rats. Compared to euglycemic rat aortic rings, diabetic rings showed less relaxation in response to ACh and SNP, and greater contraction in response to PE. Pretreatment with quercetin (10microM, 20min) increased ACh-induced relaxation and decreased PE-induced contraction in diabetic, but did not affect euglycemic rat aortic ring responses. Following pretreatment with the nitric oxide synthase inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME, 10microM), quercetin reduced PE-induced contractions in both aortic ring types, although l-NAME attenuated the reduction in the diabetic rings. Quercetin did not alter SNP vasodilatory effects in either ring type compared to their respective controls. These findings indicate that quercetin acutely improved vascular responsiveness in blood vessels from diabetic rats, and that these effects were mediated, at least in part, by enhanced endothelial nitric oxide bioavailability. These effects of quercetin suggest the possible beneficial effects of quercetin in vivo in experimental diabetes and possibly in other cardiovascular diseases.
    Matched MeSH terms: In Vitro Techniques
  10. Lee KH, Ng YP, Cheah PS, Lim CK, Toh MS
    Br J Dermatol, 2017 Jan;176(1):159-167.
    PMID: 27363533 DOI: 10.1111/bjd.14832
    BACKGROUND: Glycation is a nonenzymatic reaction that cross-links a sugar molecule and protein macromolecule to form advanced glycation products (AGEs) that are associated with various age-related disorders; thus glycation plays an important role in skin chronological ageing.

    OBJECTIVES: To develop a novel in vitro skin glycation model as a screening tool for topical formulations with antiglycation properties and to further characterize, at the molecular level, the glycation stress-driven skin ageing mechanism.

    METHODS: The glycation model was developed using human reconstituted full-thickness skin; the presence of N(ε) -(carboxymethyl) lysine (CML) was used as evidence of the degree of glycation. Topical application of emulsion containing a well-known antiglycation compound (aminoguanidine) was used to verify the sensitivity and robustness of the model. Cytokine immunoassay, quantitative real-time polymerase chain reaction and histological analysis were further implemented to characterize the molecular mechanisms of skin ageing in the skin glycation model.

    RESULTS: Transcriptomic and cytokine profiling analyses in the skin glycation model demonstrated multiple biological changes, including extracellular matrix catabolism, skin barrier function impairment, oxidative stress and subsequently the inflammatory response. Darkness and yellowness of skin tone observed in the in vitro skin glycation model correlated well with the degree of glycation stress.

    CONCLUSIONS: The newly developed skin glycation model in this study has provided a new technological dimension in screening antiglycation properties of topical pharmaceutical or cosmeceutical formulations. This study concomitantly provides insights into skin ageing mechanisms driven by glycation stress, which could be useful in formulating skin antiageing therapy in future studies.

    Matched MeSH terms: In Vitro Techniques
  11. Majithia U, Venkataraghavan K, Choudhary P, Trivedi K, Shah S, Virda M
    Indian J Dent Res, 2016 Sep-Oct;27(5):521-527.
    PMID: 27966511 DOI: 10.4103/0970-9290.195642
    INTRODUCTION: In an attempt to manage noncavitated carious lesions noninvasively through remineralization, a range of novel fluoride varnishes with additional remineralizing agents have been made available for clinical application.

    AIM AND OBJECTIVES: The aim of this study was to compare and evaluate the remineralization potential of three commercially available varnishes on artificial enamel lesions.

    MATERIALS AND METHODS: This in vitro study involves eighty intact enamel specimens prepared from premolars extracted for orthodontic purposes. After specimen preparation, the eighty samples were divided randomly into two groups (n = 40) for measurement of baseline surface Vickers microhardness and baseline calcium/phosphorus ratio (% weight) through EDAX testing. Thereafter, the specimens were subjected to demineralization for 96 h to induce initial enamel lesions and the measurements were repeated. Following demineralization, each of the two groups was divided randomly into four subgroups (n = 10) from which one was used as the control group and the others three were allotted to each of the three test varnishes. After varnish application, all the specimens were subjected to a pH cycling regimen that included alternative demineralization (3 h) and remineralization (21 h) daily, for 5 consecutive days. The Vickers microhardness and EDAX measurements were then repeated.

    RESULTS: One-way ANOVA and post hoc Tukey's tests were conducted for multiple group comparison. All the three commercially available varnishes were capable of remineralizing initial enamel lesions that were induced artificially. No difference was noted in the remineralizing efficacy of the varnishes despite their different compositions. MI Varnish™ (casein phosphopeptide-amorphous calcium phosphate fluoride varnish) showed slightly better recovery in surface microhardness as compared to the other two varnishes.

    CONCLUSION: All the varnishes used in this in vitro study are capable of reversing early enamel lesions.
    Matched MeSH terms: In Vitro Techniques
  12. Tee BH, Hoe SZ, Cheah SH, Lam SK
    Med Princ Pract, 2017;26(3):258-265.
    PMID: 28226311 DOI: 10.1159/000464363
    OBJECTIVE: This study was conducted to investigate the mechanisms of action of Eurycoma longifolia in rat corpus cavernosum.

    MATERIALS AND METHODS: Tincture of the roots was concentrated to dryness by evaporating the ethanol in vacuo. This ethanolic extract was partitioned into 5 fractions sequentially with hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The corpus cavernosum relaxant activity of each fraction was investigated. The DCM fraction which showed the highest potency in relaxing phenylephrine-precontracted corpora cavernosa was purified by column chromatography. The effects of the most potent DCM subfraction in relaxing phenylephrine-precontracted corpora cavernosa, DCM-I, on angiotensin I- or angiotensin II-induced contractions in corpora cavernosa were investigated. The effects of DCM-I pretreatment on the responses of phenylephrine-precontracted corpora cavernosa to angiotensin II or bradykinin were also studied. An in vitro assay was conducted to evaluate the effect of DCM-I on angiotensin-converting enzyme activity.

    RESULTS: Fraction DCM-I decreased the maximal contractions (100%) evoked by angiotensin I and angiotensin II to 30 ± 14% and 26 ± 16% (p < 0.001), respectively. In phenylephrine-precontracted corpora cavernosa, DCM-I pretreatment caused angiotensin II to induce 82 ± 27% relaxation of maximal contraction (p < 0.01) and enhanced (p < 0.001) bradykinin-induced relaxations from 47 ± 8% to 100 ± 5%. In vitro, DCM-I was able to reduce (p < 0.001) the maximal angiotensin-converting enzyme activity to 78 ± 0.24%.

    CONCLUSION: Fraction DCM-I was able to antagonize angiotensin II-induced contraction to cause corpus cavernosum relaxation via inhibition of angiotensin II type 1 receptor and enhance bradykinin-induced relaxation through inhibition of angiotensin-converting enzyme.

    Matched MeSH terms: In Vitro Techniques
  13. Chia LL, Jantan I, Chua KH
    Curr Pharm Biotechnol, 2017;18(7):560-568.
    PMID: 28786357 DOI: 10.2174/1389201018666170808144703
    BACKGROUND: Tocotrienols (T3) are the naturally occurring vitamin E derivatives that possess antioxidant properties and therapeutic potential in diabetic complications. The bioactivities of the derivatives are determined by the number and arrangement of methyl substitution on the structure.

    OBJECTIVE: The objective of this study was to determine the effects of T3 derivatives, σ-T3, γ-T3 and α-T3 on insulin secretion of rat pancreatic islets in a dynamic culture.

    METHOD: Pancreatic islets isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation that provided a stable cell culture environment. Glucose (2.8 mM and 16.7 mM, as basal and stimulant, respectively) and potassium chloride (KCl) (30 mM) were added to the treatment in calcium free medium. The supernatant was collected for insulin measurements.

    RESULTS: Short-term exposure (1 h) of σ-T3 to β cells in the stimulant glucose condition significantly potentiated insulin secretion in a dose-dependent manner. γ-T3 and α-T3 also displayed dosedependent effect but were less effective in the activation of insulin secretion. Essentially, KCl, a pancreatic β cell membrane depolarizing agent, added into the treatment further enhanced the insulin secretion of σ-T3, γ-T3 and α-T3 with ED50 values of 504, 511 and 588 µM, respectively.

    CONCLUSION: The findings suggest the potential of σ-T3 in regulating glucose-stimulated insulin secretion (GSIS) in response to the intracellular calcium especially in the presence of KCl.

    Matched MeSH terms: In Vitro Techniques
  14. Tan CS, Yam MF
    Naunyn Schmiedebergs Arch Pharmacol, 2018 06;391(6):561-569.
    PMID: 29552696 DOI: 10.1007/s00210-018-1481-9
    Previous studies have demonstrated that 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF) content in Orthosiphon stamineus fractions correlate with its vasorelaxation activity. Even with the availability of previous studies, there is still very little information on the vasorelaxation effect of TMF, and few scientific studies have been carried out. Therefore, the present study was designed to investigate the vasorelaxation activity and mechanism of action of the TMF. The vasorelaxation activity and the underlying mechanisms of TMF were evaluated on thoracic aortic rings isolated from Sprague Dawley rats. TMF caused the relaxation of aortic rings with endothelium pre-contracted with phenylephrine. However, the vasorelaxant effect of TMF was significantly decreased in PE-primed endothelium-denuded and potassium chloride-primed endothelium-intact aortic rings. In the presence of Nω-nitro-L-arginine methyl ester, methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, indomethacin, tetraethylammonium, 4-aminopyridine, barium chloride, atropine and propranolol, the relaxation stimulated by TMF was significantly reduced. TMF was also found to reduce Ca2+ release from sarcoplasmic reticulum (via IP3R) and block calcium channels (VOCC). The present study demonstrates the vasorelaxant effect of TMF involves NO/sGC/cGMP and prostacyclin pathways, calcium and potassium channels and muscarinic and beta-adrenergic receptors.
    Matched MeSH terms: In Vitro Techniques
  15. Yida Z, Imam MU, Ismail M
    PMID: 25475744 DOI: 10.1186/1472-6882-14-468
    Edible birds' nest (EBN) is reported to be antioxidant-rich. However, the fate of its antioxidants after oral consumption is not yet reported. To explore this, we hypothesized that EBN antioxidants are released from their matrix when subjected to in vitro simulated gastrointestinal digestion.
    Matched MeSH terms: In Vitro Techniques
  16. Tan YY, Wade JD, Tregear GW, Summers RJ
    Br J Pharmacol, 1998 Feb;123(4):762-70.
    PMID: 9517397
    1. The receptors for relaxin in the rat atria and uterus were investigated and compared by use of a series of synthetic and native relaxin analogues. The assays used were the positive chronotropic and inotropic effects in rat spontaneously beating, isolated right atrium and electrically driven left atrium and the relaxation of K+ precontracted uterine smooth muscle. 2. Relaxin analogues with an intact A- and B-chain were active in producing powerful chronotropic and inotropic effects in the rat isolated atria at nanomolar concentrations. Single-chain analogues and structural homologues of relaxin such as human insulin and sheep insulin-like growth factor I had no agonist action and did not antagonize the effect of the B29 form of human gene 2 relaxin. 3. Shortening the B-chain carboxyl terminal of human gene 1 (B2-29) relaxin to B2-26 reduced the activity of the peptide and removal of another 2 amino acid residues (B2-24) abolished the activity. This suggests that the B-chain length may be important for determination of the activity of relaxin. More detailed studies are needed to determine the effect of progressive amino acid removal on the structure and the bioactivity of relaxin. 4. Porcine prorelaxin was as active as porcine relaxin on a molar basis, suggesting that the presence of the intact C-peptide did not affect the binding of the prorelaxin to the receptor to produce functional responses. 5. Relaxin caused relaxation of uterine longitudinal and circular smooth muscle precontracted with 40 mM K+. The pEC50 values for human gene 2 and porcine relaxins were lower than those in the atrial assay, but rat relaxin had similar pEC50 values in both atrial and uterine assays. Rat relaxin was significantly less potent than either human gene 2 or porcine relaxin in the atrial assay, but in the uterine assay they were equipotent. The results suggest that the relaxin receptor or the signalling pathway in rat atria may differ from that in the uterus.
    Matched MeSH terms: In Vitro Techniques
  17. Tiew EC, Azis N, Teh LA, Shukor S, Goo CL
    Oper Dent, 2024 Jul 01;49(4):403-411.
    PMID: 38978316 DOI: 10.2341/23-063-L
    BACKGROUND: Marginal adaptation and retention of endocrowns are crucial for the success and survival of endocrowns. This study aimed to investigate the effect of different materials and intracoronal depth on the retention and marginal adaptation of CAD/CAM fabricated all-ceramic endocrowns.

    METHODS: Thirty-six mandibular premolar teeth with an average surface area of 64.49 mm2 were prepared to receive CAM/CAM fabricated endocrowns. Samples were divided randomly and equally into groups of lithium disilicate with 2 mm intracoronal depth (LD2), lithium disilicate with 4 mm intracoronal depth (LD4), polymer infiltrated ceramic network with 2 mm intracoronal depth (PICN2) and polymer infiltrated ceramic network with 4 mm intracoronal depth (PICN4). All endocrowns were cemented using ParaCore resin cement with 14N pressure and cured for 20 seconds. Fifty measurements of absolute marginal discrepancy (AMD) were done using a stereomicroscope after cementation. After 24 hours, all samples were subjected to thermocycling before the retention test. This involved using a universal testing machine with a crosshead speed of 0.5 mm/min and applying a load of 500N. The maximum force to detach the crown was recorded in newtons and the mode of failure was identified.

    RESULTS: Two-way ANOVA revealed that the AMD for PICN was statistically significantly better than lithium disilicate (p=0.01). No statistically significant difference was detected in the AMD between the two intracoronal depths (p=0.72). PICN and endocrowns with 4 mm intracoronal depth had statistically significant better retention (p<0.05). 72.22% of the sample suffered from cohesive failures and 10 LD endocrowns suffered adhesive failures.

    CONCLUSIONS: Within the limitations of this study, we found that different materials and intracoronal depths can indeed influence the retention of CAD/CAM fabricated endocrowns. Based on the controlled setting findings, PICN was found to have better retention and better marginal adaptation than similar lithium disilicate premolar endocrowns.

    Matched MeSH terms: In Vitro Techniques
  18. Init I, Mak JW, Top S, Zulhainan Z, Prummongkol S, Nissapatorn V, et al.
    PMID: 15115079
    The objective of this study was to characterize the polypeptides associated with cysts of Blastocystis hominis. This form is believed to be infective and plays a role in parasite resistance to anti-B. hominis drugs currently used for treatment of Blastocystis associated diarrhea. Cysts were induced through in vitro culture of the parasite in complete medium supplemented with bacterial extract with trypticase, metronidazole or doxycycline. SDS-PAGE analysis showed almost similar polypeptide patterns of parasite extracts obtained from in vitro cultured parasites before and after exposure with the three supplements. Polypeptide bands at 76, 58.5, 48, 45, 40, 38, 32, 25 and 22 kDa were constantly seen in all antigenic preparations and no specific cyst-associated polypeptide was present. However, on immunoblot analysis, 3 out of 16 blastocystosis human sera identified a cyst-associated polypeptide at 60 kDa in all parasite extracts prepared from cultures with the three supplements. In addition, there were associated morphological changes detected in these parasites stained with acridine orange and observed under fluorescence microscopy. Metronidazole induced cyst forms (reddish cells) as early as 12 hours post-exposure; more cyst production (with stronger immunoblot bands) occurred after 24 hours exposure. However, cysts rupture with release and destruction of B. hominis daughters cells occurred after 48 hours exposure. Doxycycline induced less cyst-like forms at 24 hours (weaker 60 kDa band) and less destruction of the cysts (60 kDa band still present at 72 hours post exposure). Bacterial extract and trypticase also induced cysts at 12 hours with increasing numbers up to 72 hours exposure (corresponding increase in intensity of 60 kDa band from samples harvested at 12 to 72 hours post exposure) without any sign of deleterious effect on the parasite.
    Matched MeSH terms: In Vitro Techniques
  19. Nadarajah VD, Chai SH, Mohammed SM, Chan KK, Kanakeswary K
    PMID: 16771215
    The objective of this study is to determine the role of carbohydrates on the toxic effect of parasporal inclusion proteins isolated from Malaysian mosquitocidal Bacillus thuringiensis (Bt) strains on erythrocytes (human and rat). Dose response analyses on the effect of these parasporal inclusions on human and rat erythrocytes suggest that toxin action is selective depending on bacterial strains and source of erythrocytes. Results from this study suggest Bt toxin is a lectin which recognizes specific plasma membrane glycoconjugate receptor(s) with a terminal residue of either D-mannose (Man), N-acetyl-D-galactosamine (GalNAc), N-acetyl-D-glucosamine (GlcNAc) or even a combination of these monosaccharides.
    Matched MeSH terms: In Vitro Techniques
  20. Radu S, Lihan S, Idris A, Ling OW, Al-Haddawi MH, Rusul G
    PMID: 10928372
    Seven isolates of Burkholderia pseudomallei from cases of melioidosis in human (2 isolates) and animal (2 isolates), cat (one isolate) and from soil samples (2 isolates) were examined for in vitro sensitivity to 14 antimicrobial agents and for presence of plasmid DNA. Randomly amplified polymorphic DNA (RAPD) analysis was used to type the isolates, using two arbitrary primers. All isolates were sensitive to chloramphenicol, kanamycin, carbenicillin, rifampicin, enrofloxacin, tetracycline and sulfamethoxazole-trimethoprim. No plasmid was detected in all the isolates tested. RADP fingerprinting demonstrated genomic relationship between isolates, which provides an effective method to study the epidemiology of the isolates examined.
    Matched MeSH terms: In Vitro Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links