Displaying publications 1861 - 1880 of 8210 in total

Abstract:
Sort:
  1. Ng PK, Lin SM, Lim PE, Hurtado AQ, Phang SM, Yow YY, et al.
    PLoS One, 2017;12(7):e0182176.
    PMID: 28759629 DOI: 10.1371/journal.pone.0182176
    Many studies classifying Gracilaria species for the exploitation of agarophytes and the development of the agar industry were conducted before the prevalence of molecular tools, resulting in the description of many species based solely on their morphology. Gracilaria firma and G. changii are among the commercially important agarophytes from the western Pacific; both feature branches with basal constrictions that taper toward acute apices. In this study, we contrasted the morpho-anatomical circumscriptions of the two traditionally described species with molecular data from samples that included representatives of G. changii collected from its type locality. Concerted molecular analyses using the rbcL and cox1 gene sequences, coupled with morphological observations of the collections from the western Pacific, revealed no inherent differences to support the treatment of the two entities as distinct taxa. We propose merging G. changii (a later synonym) into G. firma and recognize G. firma based on thallus branches with abrupt basal constrictions that gradually taper toward acute (or sometimes broken) apices, cystocarps consisting of small gonimoblast cells and inconspicuous multinucleate tubular nutritive cells issuing from gonimoblasts extending into the inner pericarp at the cystocarp floor, as well as deep spermatangial conceptacles of the verrucosa-type. The validation of specimens under different names as a single genetic species is useful to allow communication and knowledge transfer among groups from different fields. This study also revealed considerably low number of haplotypes and nucleotide diversity with apparent phylogeographic patterns for G. firma in the region. Populations from the Philippines and Taiwan were divergent from each other as well as from the populations from Malaysia, Thailand, Singapore and Vietnam. Establishment of baseline data on the genetic diversity of this commercially important agarophyte is relevant in the context of cultivation, as limited genetic diversity may jeopardize the potential for its genetic improvement over time.
    Matched MeSH terms: Gracilaria/genetics*
  2. Hameed SS, Hassan R, Muhammad FF
    PLoS One, 2017;12(11):e0187371.
    PMID: 29095904 DOI: 10.1371/journal.pone.0187371
    In this work, gene expression in autism spectrum disorder (ASD) is analyzed with the goal of selecting the most attributed genes and performing classification. The objective was achieved by utilizing a combination of various statistical filters and a wrapper-based geometric binary particle swarm optimization-support vector machine (GBPSO-SVM) algorithm. The utilization of different filters was accentuated by incorporating a mean and median ratio criterion to remove very similar genes. The results showed that the most discriminative genes that were identified in the first and last selection steps included the presence of a repetitive gene (CAPS2), which was assigned as the gene most highly related to ASD risk. The merged gene subset that was selected by the GBPSO-SVM algorithm was able to enhance the classification accuracy.
    Matched MeSH terms: Autistic Disorder/genetics*
  3. Choi SH, Vera Cruz CM, Leach JE
    Appl Environ Microbiol, 1998 May;64(5):1663-8.
    PMID: 9572933
    The presence or absence of two DNA modification systems, XorI and XorII, in 195 strains of Xanthomonas oryzae pv. oryzae collected from different major rice-growing countries of Asia was assessed. All four possible phenotypes (XorI+ XorII+, XorI+ XorII-, XorI- XorII+ and XorI- XorII-) were detected in the population at a ratio of approximately 1:2:2:2. The XorI+ XorII+ and XorI- XorII+ phenotypes were observed predominantly in strains from southeast Asia (Philippines, Malaysia, and Indonesia), whereas strains with the phenotypes XorI- XorII- and XorI+ XorII- were distributed in south Asia (India and Nepal) and northeast Asia (China, Korea, and Japan), respectively. Based on the prevalence and geographic distribution of the XorI and XorII systems, we suggest that the XorI modification system originated in northeast Asia and was later introduced to southeast Asia, while the XorII system originated in southeast Asia and moved to northeast Asia and south Asia. Genomic DNA from all tested strains of X. oryzae pv. oryzae that were resistant to digestion by endonuclease XorII or its isoschizomer PvuI also hybridized with a 7.0-kb clone that contained the XorII modification system, whereas strains that were digested by XorII or PvuI lacked DNA that hybridized with the clone. Size polymorphisms were observed in fragments that hybridized with the 7.0-kb clone. However, a single hybridization pattern generally was found in XorII+ strains within a country, indicating clonal maintenance of the XorII methyl-transferase gene locus. The locus was monomorphic for X. oryzae pv. oryzae strains from the Philippines and all strains from Indonesia and Korea.
    Matched MeSH terms: Xanthomonas/genetics
  4. Zhao S, Chen J, Cao S, Wang H, Chen H, Wei Y, et al.
    Plant Physiol Biochem, 2024 Mar;208:108480.
    PMID: 38437751 DOI: 10.1016/j.plaphy.2024.108480
    It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.
    Matched MeSH terms: Tobacco/genetics
  5. Ishak SNH, Kamarudin NHA, Ali MSM, Leow ATC, Rahman RNZRA
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731607 DOI: 10.3390/molecules25153430
    A comparative structure analysis between space- and an Earth-grown T1 recombinant lipase from Geobacillus zalihae had shown changes in the formation of hydrogen bonds and ion-pair interactions. Using the space-grown T1 lipase validated structure having incorporated said interactions, the recombinant T1 lipase was re-engineered to determine the changes brought by these interactions to the structure and stability of lipase. To understand the effects of mutation on T1 recombinant lipase, five mutants were developed from the structure of space-grown T1 lipase and biochemically characterized. The results demonstrate an increase in melting temperature up to 77.4 °C and 76.0 °C in E226D and D43E, respectively. Moreover, the mutated lipases D43E and E226D had additional hydrogen bonds and ion-pair interactions in their structures due to the improvement of stability, as observed in a longer half-life and an increased melting temperature. The biophysical study revealed differences in β-Sheet percentage between less stable (T118N) and other mutants. As a conclusion, the comparative analysis of the tertiary structure and specific residues associated with ion-pair interactions and hydrogen bonds could be significant in revealing the thermostability of an enzyme with industrial importance.
    Matched MeSH terms: Recombinant Proteins/genetics
  6. Kalinichenko LS, Kohl Z, Mühle C, Hassan Z, Hahn A, Schmitt EM, et al.
    J Neurochem, 2024 Mar;168(3):269-287.
    PMID: 38284431 DOI: 10.1111/jnc.16051
    Point mutations in the α-synuclein coding gene may lead to the development of Parkinson's disease (PD). PD is often accompanied by other psychiatric conditions, such as anxiety, depression, and drug use disorders, which typically emerge in adulthood. Some of these point mutations, such as SNCA and A30T, have been linked to behavioral effects that are not commonly associated with PD, especially regarding alcohol consumption patterns. In this study, we investigated whether the familial PD point mutation A53T is associated with changes in alcohol consumption behavior and emotional states at ages not yet characterized by α-synuclein accumulation. The affective and alcohol-drinking phenotypes remained unaltered in female PDGF-hA53T-synuclein-transgenic (A53T) mice during both early and late adulthood. Brain region-specific activation of ceramide-producing enzymes, acid sphingomyelinase (ASM), and neutral sphingomyelinase (NSM), known for their neuroprotective properties, was observed during early adulthood but not in late adulthood. In males, the A53T mutation was linked to a reduction in alcohol consumption in both early and late adulthood. However, male A53T mice displayed increased anxiety- and depression-like behaviors during both early and late adulthood. Enhanced ASM activity in the dorsal mesencephalon and ventral hippocampus may potentially contribute to these adverse behavioral effects of the mutation in males during late adulthood. In summary, the A53T gene mutation was associated with diverse changes in emotional states and alcohol consumption behavior long before the onset of PD, and these effects varied by sex. These alterations in behavior may be linked to changes in brain ceramide metabolism.
    Matched MeSH terms: Alcohol Drinking/genetics
  7. Looi CK, Foong LC, Chung FF, Khoo AS, Loo EM, Leong CO, et al.
    Cell Biol Toxicol, 2023 Dec;39(6):2501-2526.
    PMID: 37755585 DOI: 10.1007/s10565-023-09830-9
    Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer that is highly associated with Epstein-Barr virus (EBV) infection. EBV acts as an epigenetic driver in NPC tumorigenesis, reprogramming the viral and host epigenomes to regulate viral latent gene expression, and creating an environment conducive to the malignant transformation of nasopharyngeal epithelial cells. Targeting epigenetic mechanisms in pre-clinical studies has been shown promise in eradicating tumours and overcoming immune resistance in some solid tumours. However, its efficacy in NPC remains inclusive due to the complex nature of this cancer. In this review, we provide an updated understanding of the roles of epigenetic factors in regulating EBV latent gene expression and promoting NPC progression. We also explore the crosstalk between epigenetic mechanisms and immune evasion in NPC. Particularly, we discuss the potential roles of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors in reversing immune suppression and augmenting antitumour immunity. Furthermore, we highlight the advantages of combining epigenetic therapy and immune checkpoint inhibitor to reverse immune resistance and improve clinical outcomes. Epigenetic drugs have the potential to modulate both epigenetic mediators and immune factors involved in NPC. However, further research is needed to fully comprehend the diverse range of epigenetic modifications in NPC. A deeper understanding of the crosstalk between epigenetic mechanisms and immune evasion during NPC progression is crucial for the development of more effective treatments for this challenging disease.
    Matched MeSH terms: Herpesvirus 4, Human/genetics
  8. Neoh SZ, Tan HT, Trakunjae C, Chek MF, Vaithanomsat P, Hakoshima T, et al.
    Microb Cell Fact, 2024 Feb 15;23(1):52.
    PMID: 38360657 DOI: 10.1186/s12934-024-02329-w
    BACKGROUND: Among the polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] is reported to closely resemble polypropylene and low-density polyethylene. Studies have shown that PHA synthase (PhaC) from mangrove soil (PhaCBP-M-CPF4) is an efficient PhaC for P(3HB-co-3HHx) production and N-termini of PhaCs influence its substrate specificity, dimerization, granule morphology, and molecular weights of PHA produced. This study aims to further improve PhaCBP-M-CPF4 through N-terminal truncation.

    RESULTS: The N-terminal truncated mutants of PhaCBP-M-CPF4 were constructed based on the information of the predicted secondary and tertiary structures using PSIPRED server and AlphaFold2 program, respectively. The N-terminal truncated PhaCBP-M-CPF4 mutants were evaluated in C. necator mutant PHB-4 based on the cell dry weight, PHA content, 3HHx molar composition, molecular weights, and granule morphology of the PHA granules. The results showed that most transformants harbouring the N-terminal truncated PhaCBP-M-CPF4 showed a reduction in PHA content and cell dry weight except for PhaCBP-M-CPF4 G8. PhaCBP-M-CPF4 G8 and A27 showed an improved weight-average molecular weight (Mw) of PHA produced due to lower expression of the truncated PhaCBP-M-CPF4. Transformants harbouring PhaCBP-M-CPF4 G8, A27, and T74 showed a reduction in the number of granules. PhaCBP-M-CPF4 G8 produced higher Mw PHA in mostly single larger PHA granules with comparable production as the full-length PhaCBP-M-CPF4.

    CONCLUSION: This research showed that N-terminal truncation had effects on PHA accumulation, substrate specificity, Mw, and granule morphology. This study also showed that N-terminal truncation of the amino acids that did not adopt any secondary structure can be an alternative to improve PhaCs for the production of PHA with higher Mw in mostly single larger granules.

    Matched MeSH terms: Acyltransferases/genetics
  9. Childs EJ, Mocci E, Campa D, Bracci PM, Gallinger S, Goggins M, et al.
    Nat Genet, 2015 Aug;47(8):911-6.
    PMID: 26098869 DOI: 10.1038/ng.3341
    Pancreatic cancer is the fourth leading cause of cancer death in the developed world. Both inherited high-penetrance mutations in BRCA2 (ref. 2), ATM, PALB2 (ref. 4), BRCA1 (ref. 5), STK11 (ref. 6), CDKN2A and mismatch-repair genes and low-penetrance loci are associated with increased risk. To identify new risk loci, we performed a genome-wide association study on 9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases and 3,792 controls in 9 studies from North America, Central Europe and Australia. We identified three newly associated regions: 17q25.1 (LINC00673, rs11655237, odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.19-1.34, P = 1.42 × 10(-14)), 7p13 (SUGCT, rs17688601, OR = 0.88, 95% CI = 0.84-0.92, P = 1.41 × 10(-8)) and 3q29 (TP63, rs9854771, OR = 0.89, 95% CI = 0.85-0.93, P = 2.35 × 10(-8)). We detected significant association at 2p13.3 (ETAA1, rs1486134, OR = 1.14, 95% CI = 1.09-1.19, P = 3.36 × 10(-9)), a region with previous suggestive evidence in Han Chinese. We replicated previously reported associations at 9q34.2 (ABO), 13q22.1 (KLF5), 5p15.33 (TERT and CLPTM1), 13q12.2 (PDX1), 1q32.1 (NR5A2), 7q32.3 (LINC-PINT), 16q23.1 (BCAR1) and 22q12.1 (ZNRF3). Our study identifies new loci associated with pancreatic cancer risk.
    Matched MeSH terms: Chromosomes, Human, Pair 17/genetics*; Chromosomes, Human, Pair 2/genetics*; Chromosomes, Human, Pair 3/genetics*; Chromosomes, Human, Pair 7/genetics*; Pancreatic Neoplasms/genetics*; Genetic Predisposition to Disease/genetics*; Genetic Loci/genetics
  10. Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, et al.
    Nat Genet, 2017 May;49(5):680-691.
    PMID: 28346442 DOI: 10.1038/ng.3826
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.
    Matched MeSH terms: Neoplasms, Glandular and Epithelial/genetics*; Ovarian Neoplasms/genetics*; BRCA1 Protein/genetics; Genetic Predisposition to Disease/genetics*; BRCA2 Protein/genetics; Telomere-Binding Proteins/genetics; Genetic Loci/genetics*
  11. Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al.
    Nature, 2017 Nov 02;551(7678):92-94.
    PMID: 29059683 DOI: 10.1038/nature24284
    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P 
    Matched MeSH terms: Binding Sites/genetics; Breast Neoplasms/genetics*; Genetic Predisposition to Disease/genetics*; Multifactorial Inheritance/genetics; Polymorphism, Single Nucleotide/genetics; European Continental Ancestry Group/genetics; Asian Continental Ancestry Group/genetics
  12. Moreno I, Garcia-Grau I, Perez-Villaroya D, Gonzalez-Monfort M, Bahçeci M, Barrionuevo MJ, et al.
    Microbiome, 2022 Jan 04;10(1):1.
    PMID: 34980280 DOI: 10.1186/s40168-021-01184-w
    BACKGROUND: Previous evidence indicates associations between the female reproductive tract microbiome composition and reproductive outcome in infertile patients undergoing assisted reproduction. We aimed to determine whether the endometrial microbiota composition is associated with reproductive outcomes of live birth, biochemical pregnancy, clinical miscarriage or no pregnancy.

    METHODS: Here, we present a multicentre prospective observational study using 16S rRNA gene sequencing to analyse endometrial fluid and biopsy samples before embryo transfer in a cohort of 342 infertile patients asymptomatic for infection undergoing assisted reproductive treatments.

    RESULTS: A dysbiotic endometrial microbiota profile composed of Atopobium, Bifidobacterium, Chryseobacterium, Gardnerella, Haemophilus, Klebsiella, Neisseria, Staphylococcus and Streptococcus was associated with unsuccessful outcomes. In contrast, Lactobacillus was consistently enriched in patients with live birth outcomes.

    CONCLUSIONS: Our findings indicate that endometrial microbiota composition before embryo transfer is a useful biomarker to predict reproductive outcome, offering an opportunity to further improve diagnosis and treatment strategies. Video Abstract.

    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  13. Laver TW, Wakeling MN, Hua JHY, Houghton JAL, Hussain K, Ellard S, et al.
    Clin Endocrinol (Oxf), 2018 Nov;89(5):621-627.
    PMID: 30238501 DOI: 10.1111/cen.13841
    OBJECTIVE: Hyperinsulinaemic hypoglycaemia (HH) can occur in isolation or more rarely feature as part of a syndrome. Screening for mutations in the "syndromic" HH genes is guided by phenotype with genetic testing used to confirm the clinical diagnosis. As HH can be the presenting feature of a syndrome, it is possible that mutations will be missed as these genes are not routinely screened in all newly diagnosed individuals. We investigated the frequency of pathogenic variants in syndromic genes in infants with HH who had not been clinically diagnosed with a syndromic disorder at referral for genetic testing.

    DESIGN: We used genome sequencing data to assess the prevalence of mutations in syndromic HH genes in an international cohort of patients with HH of unknown genetic cause.

    PATIENTS: We undertook genome sequencing in 82 infants with HH without a clinical diagnosis of a known syndrome at referral for genetic testing.

    MEASUREMENTS: Within this cohort, we searched for the genetic aetiologies causing 20 different syndromes where HH had been reported as a feature.

    RESULTS: We identified a pathogenic KMT2D variant in a patient with HH diagnosed at birth, confirming a genetic diagnosis of Kabuki syndrome. Clinical data received following the identification of the mutation highlighted additional features consistent with the genetic diagnosis. Pathogenic variants were not identified in the remainder of the cohort.

    CONCLUSIONS: Pathogenic variants in the syndromic HH genes are rare; thus, routine testing of these genes by molecular genetics laboratories is unlikely to be justified in patients without syndromic phenotypes.

    Matched MeSH terms: Abnormalities, Multiple/genetics; DNA-Binding Proteins/genetics; Hematologic Diseases/genetics; Mutation/genetics; Neoplasm Proteins/genetics; Vestibular Diseases/genetics; Congenital Hyperinsulinism/genetics*
  14. Mostafa N, Omar H, Tan SG, Napis S
    Molecules, 2011 Mar 22;16(3):2599-608.
    PMID: 21441863 DOI: 10.3390/molecules16032599
    Haematococcus pluvialis (Flotow) is a unicellular green alga, which is considered to be the best astaxanthin-producing organism. Molecular markers are suitable tools for the purpose of finding out genetic variations in organisms; however there have been no studies conducted on ISSR or RAPD molecular markers for this organism. The DNA of 10 different strains of H. pluvialis (four strains from Iran, two strains from Finland, one strain from Switzerland and three strains from the USA) was extracted. A genetic similarity study was carried out using 14 ISSR and 12 RAPD primers. Moreover, the molecular weights of the bands produced ranged from 0.14 to 3.4 Kb. The PCA and dendrogram clustered the H. pluvialis strains into various groups according to their geographical origin. The lowest genetic similarity was between the Iran2 and USA2 strains (0.08) and the highest genetic similarity was between Finland1 and Finland2 (0.64). The maximum numbers of bands produced by the ISSR and RAPD primers were 35 and 6 bands, respectively. The results showed that ISSR and RAPD markers are useful for genetic diversity studies of Haematococcus as they showed geographical discrimination.
    Matched MeSH terms: Chlorophyta/genetics*
  15. Hasan WANBW, Nezhad NG, Yaacob MA, Salleh AB, Rahman RNZRA, Leow TC
    World J Microbiol Biotechnol, 2024 Feb 22;40(4):106.
    PMID: 38386107 DOI: 10.1007/s11274-024-03927-x
    Enzymes are often required to function in a particular reaction condition by the industrial procedure. In order to identify critical residues affecting the optimum pH of Staphylococcal lipases, chimeric lipases from homologous lipases were generated via a DNA shuffling strategy. Chimeric 1 included mutations of G166S, K212E, T243A, H271Y. Chimeric 2 consisted of substitutions of K212E, T243A, H271Y. Chimeric 3 contained substitutions of K212E, R359L. From the screening results, the pH profiles for chimeric 1 and 2 lipases were shifted from pH 7 to 6. While the pH of chimeric 3 was shifted to 8. It seems the mutation of K212E in chimeric 1 and 2 decreased the pH to 6 by changing the electrostatic potential surface. Furthermore, chimeric 3 showed 10 ˚C improvement in the optimum temperature due to the rigidification of the catalytic loop through the hydrophobic interaction network. Moreover, the substrate specificity of chimeric 1 and 2 was increased towards the longer carbon length chains due to the mutation of T243A adjacent to the lid region through increasing the flexibility of the lid. Current study illustrated that directed evolution successfully modified lipase properties including optimum pH, temperature and substrate specificity through mutations, especially near catalytic and lid regions.
    Matched MeSH terms: Lipase/genetics
  16. Gill H, Leung GMK, Ooi MGM, Teo WZY, Wong CL, Choi CW, et al.
    Clin Exp Med, 2023 Dec;23(8):4199-4217.
    PMID: 37747591 DOI: 10.1007/s10238-023-01189-9
    Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal hematopoietic stem cell disorders characterized clinically by the proliferation of one or more hematopoietic lineage(s). The classical Philadelphia-chromosome (Ph)-negative MPNs include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The Asian Myeloid Working Group (AMWG) comprises representatives from fifteen Asian centers experienced in the management of MPN. This consensus from the AMWG aims to review the current evidence in the risk stratification and treatment of Ph-negative MPN, to identify management gaps for future improvement, and to offer pragmatic approaches for treatment commensurate with different levels of resources, drug availabilities and reimbursement policies in its constituent regions. The management of MPN should be patient-specific and based on accurate diagnostic and prognostic tools. In patients with PV, ET and early/prefibrotic PMF, symptoms and risk stratification will guide the need for early cytoreduction. In younger patients requiring cytoreduction and in those experiencing resistance or intolerance to hydroxyurea, recombinant interferon-α preparations (pegylated interferon-α 2A or ropeginterferon-α 2b) should be considered. In myelofibrosis, continuous risk assessment and symptom burden assessment are essential in guiding treatment selection. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) in MF should always be based on accurate risk stratification for disease-risk and post-HSCT outcome. Management of classical Ph-negative MPN entails accurate diagnosis, cytogenetic and molecular evaluation, risk stratification, and treatment strategies that are outcome-oriented (curative, disease modification, improvement of quality-of-life).
    Matched MeSH terms: Interferon-alpha/genetics
  17. Ghimire L, Banjara MR, Abdulla AM
    J Nepal Health Res Counc, 2024 Mar 31;21(4):616-622.
    PMID: 38616592 DOI: 10.33314/jnhrc.v21i4.4861
    BACKGROUND: Staphylococcus aureus (S.aureus) is an emerging antibiotic resistant bacterium responsible for various infections in human. Resistance to methicillin and vancomycin are of prime concern in S. aureus. The study aims to determine the minimum inhibitory concentration (MIC) of Vancomycin and evaluate the existence of mecA and vanA genes, associated with antibiotic resistance.

    METHODS: Clinical specimens from three Kathmandu hospitals were processed and S. aureus was identified using conventional microbiological procedures. MRSA was phenotypically identified with cefoxitin (30µg) disc diffusion, while vancomycin susceptibility was assessed using the Ezy MICTM stripes. The mecA and vanA genes were detected by polymerase chain reaction (PCR).

    RESULTS: Out of 266 S. aureus samples from various clinical specimen subjected for analysis, 77 (28.9%) were found methicillin-resistant (MRSA) and 10 (3.8%) were observed vancomycin-resistant (VRSA). Vancomycin resistant isolates showed a significant correlation between resistance to ampicillin, chloramphenicol, and cefoxitin. The mecA gene was found in 39 of the MRSA isolates, having 50.64% of MRSA cases, while the vanA gene was detected in 4 of the VRSA cases, constituting 40% of VRSA occurrences.

    CONCLUSIONS: The strains with higher vancomycin minimum inhibitory concentration values (≥ 1.5 μg/ml) displayed increased resistance rates to various antibiotics compared to strains with lower minimum inhibitory concentration values (< 1.5 μg/ml). The presence of vanA genes was strongly associated (100%) with vancomycin resistance, while the 10.3% mecA gene was identified from MRSA having resistance towards vancomycin also.

    Matched MeSH terms: Staphylococcus aureus/genetics
  18. Gao Y, Hu Y, Xu S, Liang H, Lin H, Yin TH, et al.
    J Helminthol, 2024 Apr 15;98:e33.
    PMID: 38618902 DOI: 10.1017/S0022149X24000221
    We first sequenced and characterised the complete mitochondrial genome of Toxocara apodeme, then studied the evolutionary relationship of the species within Toxocaridae. The complete mitochondrial genome was amplified using PCR with 14 specific primers. The mitogenome length was 14303 bp in size, including 12 PCGs (encoding 3,423 amino acids), 22 tRNAs, 2 rRNAs, and 2 NCRs, with 68.38% A+T contents. The mt genomes of T. apodemi had relatively compact structures with 11 intergenic spacers and 5 overlaps. Comparative analyses of the nucleotide sequences of complete mt genomes showed that T. apodemi had higher identities with T. canis than other congeners. A sliding window analysis of 12 PCGs among 5 Toxocara species indicated that nad4 had the highest sequence divergence, and cox1 was the least variable gene. Relative synonymous codon usage showed that UUG, ACU, CCU, CGU, and UCU most frequently occurred in the complete genomes of T. apodemi. The Ka/Ks ratio showed that all Toxocara mt genes were subject to purification selection. The largest genetic distance between T. apodemi and the other 4 congeneric species was found in nad2, and the smallest was found in cox2. Phylogenetic analyses based on the concatenated amino acid sequences of 12 PCGs demonstrated that T. apodemi formed a distinct branch and was always a sister taxon to other congeneric species. The present study determined the complete mt genome sequences of T. apodemi, which provide novel genetic markers for further studies of the taxonomy, population genetics, and systematics of the Toxocaridae nematodes.
    Matched MeSH terms: Toxocara/genetics
  19. Jarolim P, Palek J, Amato D, Hassan K, Sapak P, Nurse GT, et al.
    Proc Natl Acad Sci U S A, 1991 Dec 15;88(24):11022-6.
    PMID: 1722314
    Southeast Asian ovalocytosis (SAO) is a hereditary condition that is widespread in parts of Southeast Asia. The ovalocytic erythrocytes are rigid and resistant to invasion by various malarial parasites. We have previously found that the underlying defect in SAO involves band 3 protein, the major transmembrane protein, which has abnormal structure and function. We now report two linked mutations in the erythrocyte band 3 gene in SAO: (i) a deletion of codons 400-408 and (ii) a substitution, A----G, in the first base of codon 56 leading to substitution of Lys-56 by Glu-56. The first defect leads to a deletion of nine amino acids in the boundary of cytoplasmic and membrane domains of band 3. This defect has been detected in all 30 ovalocytic subjects from Malaysia, the Philippines, and two unrelated coastal regions of Papua New Guinea, whereas it was absent in all 30 controls from Southeast Asia and 20 subjects of different ethnic origin from the United States. The Lys-56----Glu substitution has likewise been found in all SAO subjects. However, it has also been detected in 5 of the 50 control subjects, suggesting that it represents a linked polymorphism. We conclude that the deletion of codons 400-408 in the band 3 gene constitutes the underlying molecular defect in SAO.
    Matched MeSH terms: Anion Exchange Protein 1, Erythrocyte/genetics*; Codon/genetics; DNA/genetics; Elliptocytosis, Hereditary/genetics*; Immunity, Innate/genetics; Malaria/genetics*; RNA/genetics
  20. Jabeen M, Shoukat S, Shireen H, Bao Y, Khan A, Abbasi AA
    Virol J, 2024 Mar 06;21(1):55.
    PMID: 38449001 DOI: 10.1186/s12985-024-02328-8
    Over the course of the COVID-19 pandemic, several SARS-CoV-2 variants have emerged that may exhibit different etiological effects such as enhanced transmissibility and infectivity. However, genetic variations that reduce virulence and deteriorate viral fitness have not yet been thoroughly investigated. The present study sought to evaluate the effects of viral genetic makeup on COVID-19 epidemiology in Pakistan, where the infectivity and mortality rate was comparatively lower than other countries during the first pandemic wave. For this purpose, we focused on the comparative analyses of 7096 amino-acid long polyprotein pp1ab. Comparative sequence analysis of 203 SARS-CoV-2 genomes, sampled from Pakistan during the first wave of the pandemic revealed 179 amino acid substitutions in pp1ab. Within this set, 38 substitutions were identified within the Nsp3 region of the pp1ab polyprotein. Structural and biophysical analysis of proteins revealed that amino acid variations within Nsp3's macrodomains induced conformational changes and modified protein-ligand interactions, consequently diminishing the virulence and fitness of SARS-CoV-2. Additionally, the epistatic effects resulting from evolutionary substitutions in SARS-CoV-2 proteins may have unnoticed implications for reducing disease burden. In light of these findings, further characterization of such deleterious SARS-CoV-2 mutations will not only aid in identifying potential therapeutic targets but will also provide a roadmap for maintaining vigilance against the genetic variability of diverse SARS-CoV-2 strains circulating globally. Furthermore, these insights empower us to more effectively manage and respond to potential viral-based pandemic outbreaks of a similar nature in the future.
    Matched MeSH terms: Virulence/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links