Displaying publications 1881 - 1900 of 2920 in total

Abstract:
Sort:
  1. Mukhlis A Rahman, Mohd Kamal Ghazali, Juhana Jaafar, Ahmad Fauzi Ismail, Wan Muhammad Solehin Wan Abd Aziz, Mohd Hafiz Dzarfan Othman
    Sains Malaysiana, 2015;44:1195-1201.
    This article describes the preparation of titanium dioxide (TiO2) hollow fiber membrane using phase inversion and sintering technique. In this study, nano-sized TiO2 powders with different particle sizes were used to prepare ceramic hollow fiber membranes. In a series of preparation steps, a dispersant was dissolved in organic solvent before the addition of ceramic powders. These steps were followed by the addition of polymer binder. The membrane precursor was obtained by extruding the ceramic suspension into a coagulation bath, which enabled the precipitation of the precursor of ceramic hollow fiber membrane. The dried precursor was later sintered at temperatures ranging from 1200 to 1300oC to obtain TiO2 hollow fiber membrane. Scanning electron microscopy (SEM) was used to study the morphology of TiO2 hollow fiber membrane. The SEM images show the membrane can be shaped into asymmetric structure and symmetric structure based on the ceramic suspension compositions. The highest mechanical strength obtained was 223 MPa when the membrane prepared using 20 wt. % ceramic loading of single nano-sized powder and sintered at 1300oC. TiO2 hollow fiber membrane prepared using similar ceramic loading showed high permeation rate of inert gas. High pure water fluxes were obtained when permeability tests was carried out using TiO2 hollow fiber membrane, prepared using mixture of nano-sized particles, even though its cross-section have a sponge-like structure.
    Matched MeSH terms: Temperature
  2. IRVINE K, VERMETTE S, FIRUZA BEGHAM MUSTAFA
    Sains Malaysiana, 2013;42:1539-1548.
    Longitudinal water quality trends were assessed in the Tengi River system, Selangor, Malaysia, as the water moved from a peat swamp forest, through different agricultural land uses and finally through a town and then to the Straits of Malacca. Water draining from the peat swamp forest was dark in color due to its organic content and low in dissolved oxygen, pH, E. coli, calcium, nitrate and ammonia. The normal diurnal pattern for water temperature was observed for the peat swamp forest drainage, but there was no clear diurnal pattern evident in the dissolved oxygen data. The E. coli levels increased monotonically from the peat swamp forest waters (0 colonies/100 mL) through the agricultural areas (100-2000 colonies/100 mL) and town (7100 colonies/100 mL) and similarly pH increased along the same continuum. Dissolved oxygen increased from the peat swamp forest through the agricultural areas, but was lower in the town-impacted reach of the Tengi River.
    Matched MeSH terms: Temperature
  3. Siti Farhana Hisham, Ishak Ahmad, Rusli Daik, Anita Ramli
    Sains Malaysiana, 2011;40:1179-1186.
    In this study, poly(ethylene terephthalate) (PET) wastes bottle was recycled by glycolysis process using ethylene glycol. The unsaturated polyester resin (UPR) was then prepared by reacting the glycolysed product with maleic anhydride. The blend of UPR based on recycled PET wastes with liquid natural rubber (LNR) was carried out by varying the amount of LNR from 0 to 7.5 wt%. Mechanical tests such as tensile and impact were conducted to investigate the effects of LNR on the mechanical properties. Scanning Electron Microscopy (SEM) was used to analyze the morphology of the breaking area resulted from the tensile tests on the UPR and blend samples. From the results, the blend of 2.5 wt% LNR in UPR based recycled PET wastes achieved the highest strength in the mechanical properties and showed a well dispersed of elastomer particles in the sample morphology compared to other blends concentrations. This blend sample was then compared to the optimum blend of LNR with commercial resin through the glass transition temperature value Tg, mechanical strength and morphology properties. The comparison study showed that the Tg for UPR based recycled PET was higher than the value represented from commercial resin due to the degree of crystalinity in the molecular structure of the materials. LNR was found to be an effective impact modifier which gave a greater improvement in UPR from recycled PET wastes structure but not to the commercial one which needs 5% LNR to achieve the optimum properties. Thus, the compatibility between the UP resin based recycled PET and LNR was much better than with the commercial resin.
    Matched MeSH terms: Transition Temperature
  4. Ainon Hamzah, Siti Nursyazana Md Salleh, Sukiman Sarmani
    Sains Malaysiana, 2014;43:1327-1332.
    Bioremediation of crude oil using biostimulation and/or bioaugmentation was done by simulation study in the green house under uncontrolled environment temperature. In this study, the soil with indigenous microbes was spiked with Tapis crude oil at 200 g/kg. The microbial density of the amended soils was augmented by addition of fresh inoculum of microbial consortium which consist of Pseudomonas aeruginosa UKMP-14T, Acinetobacter baumannii UKMP-12T and seed culture two strains of fungi, Trichoderma virens UKMP-1M and Trichoderma virens UKMP-2M at ratio 1:1:1:1 (v/w). The amendment soil was added with 20% (v/w) of standardize consortium inoculum, 20% (w/w) of dried empty fruit bunch (EFB) and the effect of EFB was compared with 0.7% commercial fertilizer (v/w) which contain NPK (8:8:1). Soil with indigenous microbes was used as a control. Results showed total petroleum hydrocarbon (TPH) degradation for treatment added with NPK fertilizer was 70.36%, addition with EFB bulking agent 68.86% and addition of both NPK and EFB was 100% at day 30 of incubation. The control plot, 62% of TPH degradation was achieved after 30 days incubation.
    Matched MeSH terms: Temperature
  5. Suratman S, Hussein A, Latif M, Weston K
    Sains Malaysiana, 2014;43:1127-1131.
    Setiu Wetland is located in the southern part of South China Sea, Malaysia. This wetland has diverse ecosystems that represent a vast array of biological diversity and abundance in utilizable natural resources. However, there are large scales of aquaculture activities within and nearby the wetland which could threaten the ecosystems of this area. Thus, the main goal of the study was to assess the impact of these activities through the measurement of physico-chemical water quality parameters and then compare this to a previous study carried out in the same study area. The parameters (salinity, temperature, pH, dissolved oxygen, biological oxygen demand and total suspended solids) were monitored monthly at the surface water from July to October 2008. The results showed that the impact of aquaculture activities on the water quality in the area with dissolved oxygen and total suspended solids concentrations were considerably lower than those observed previously. With respect to the Malaysian Marine Water Quality Criteria and Standard, most of the level of parameters measured remained Class 1, suggesting the physico-chemical environment were in line with sustainable conservation of the marine protected areas and marine parks of this wetland area.
    Matched MeSH terms: Temperature
  6. Yap CC, Muhammad Yahaya, Muhamad Mat Salleh, Dee CF
    Sains Malaysiana, 2008;37:233-237.
    ZnO nanowires have been synthesized using a catalyst-free carbothermal reduction approach on SiO2-coated Si substrates in a flowing nitrogen atmosphere with a mixture of ZnO and graphite as reactants. The collected ZnO nanowires have been characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and photoluminescence spectroscopy. Controlled growth of the ZnO nanowires was achieved by manipulating the reactants heating temperature from 700 to 1000 oC. It was found that the optimum temperature to synthesize high density and long ZnO nanowires was about 800 0C. The possible growth mechanism of ZnO nanowires is also proposed.
    Matched MeSH terms: Temperature
  7. Md. Isa K, Othman L, Osman Z
    Sains Malaysiana, 2011;40:1179-1186.
    Polymer electrolytes based on polyacrylonitrile (PAN) containing inorganic salts; lithium triflate (LiCF3SO3) and sodium triflate (NaCF3SO3) and ethylene carbonate (EC) as plasticizer were prepared using solvent casting technique. In this study, five systems of plasticized and unplasticized polymer electrolyte films i.e. PAN-EC, PAN-LiCF3SO3, PAN-NaCF3SO3 PAN-EC-LiCF3SO3 and PAN-EC-NaCF3SO3 systems have been prepared. The structural and morphological properties of the films were studied using infrared spectroscopy and scanning electron microscopy (SEM) while the conductivity study was done by using impedance spectroscopy. The infrared results revealed that interaction had taken place between the nitrogen atoms of PAN and Li+ and Na+ ions from the salts. SEM micrographs showed that the plasticized film, PAN-EC-NaCF3SO3 has bigger pores than PAN-EC-LiCF3SO3 film resulting in the film containing NaCF3SO3 salt being more conductive. On addition of salts and plasticizer, the conductivity of pure PAN increases to three orders of magnitude. The plasticized film containing NaCF3SO3 salt has a higher conductivity compared to that containing LiCF3SO3 salt. This result showed that the interaction between Li+-ion and the nitrogen atom of PAN was stronger than that of Na+-ion. The conductivity-temperature dependence of the highest conducting film from each system follows Arrhenius equation in the temperature range of 303 to 353 K. The conductivity-pressure study in the range of 0.01 - 0.09 MPa showed that the conductivity decreased when pressure was increased. This can be explained in term of free volume model.
    Matched MeSH terms: Temperature
  8. Aishah M, Wan Rosli W
    Sains Malaysiana, 2013;42:937-941.
    Mushrooms are basically fungi, which have fleshy and spore-bearing fruiting body. This family of fungi literally has thousands of varieties of mushroom throughout the world. Oyster mushrooms are uniquely distinctive and they do look like oysters. Drying these mushroom confer a stabilizing property to it and then can be stored for a longer period. The nutritional values of the dried oyster mushroom with different drying techniques were thus determined. There were three different drying techniques used. These include low heat air blow (LHAB, AnjaadTM), sun drying (SD) and gas laboratory oven (LO) drying. All three samples were analyzed for beta-glucan content, water activity, colour, proximate analysis and dietary fibre concentration. The result showrd that LHAB method confers the lowest water activity compared with the other two drying methods. It also has the lowest colour measurement for brightness. Mushroom samples dried by LHAB techniques contain the highest concentration of both fat and carbohydrate compared with the other two methods. Besides, SD method confers the highest beta-glucan content. On the other hand, dietary fibres observed in LO dried samples contain the highest fibre content among the three drying treatments. In conclusion, LHAB method is recommended in reducing water activity and increasing proximate contents while both SD and LO are good in preserving beta-glucan and dietary fibre contents, respectively.
    Matched MeSH terms: Hot Temperature
  9. Fatariah Z, Zulkhairuazha TT, Wan Rosli W
    Sains Malaysiana, 2014;43:1181-1187.
    Ash gourd (Benincasa hispida, Bh) is traditionally claimed useful in treating asthma, cough, diabetes, haemoptysis and hemorrhages from internal organs, epilepsy, fever and balancing of the body heat. One of the major phenolic acids presented in Benincasa hispida is gallic acid, a phenolic compound which is linked with its ability in reducing Type II diabetes. The aim of the present study was to investigate the effect of different extraction techniques on the concentration of gallic acid in Bh. The Bh extracts were prepared with three different techniques namely; fresh extract (FE), low heating (LH) and drying and heating (DH). The gallic acid has been detected and quantified using high performance liquid chromatography (HPLC) coupled with uv-Vis detector. The amount of gallic acid detected in FE, LH and DH were 0.036, 0.050 and 0 272 mg1100 g, respectively. The limits of detection was 0.75 liglmL while the limit of quantification and recovery were 2.50 liglmL and 95 .53% , respectively. In summary, HPLC technique coupled with vv detector systems able to quantify gallic acid in Bh extracts. The gallic acid were present at higher concentration in Bh extracted using drying and heating, followed by low heating and fresh extract methods.
    Matched MeSH terms: Hot Temperature
  10. Prommi T, Payakka A
    Sains Malaysiana, 2015;44:707-717.
    Biodiversity of aquatic insect and physicochemical water quality parameters in Mae Tao and Mae Ku watersheds were
    assessed bi-monthly from February 2011 to February 2012. A total of 59 families representing 9 orders were recorded.
    At order level, Trichoptera was found at the highest frequency in total abundance (45.75%) followed by Ephemeroptera
    (18.06%), Hemiptera (13.45%), Odonata (9.62%), Diptera (8.17%), Coleoptera (4.6%), Megaloptera (0.17%),
    Lepidoptera (0.11%) and Plecoptera (0.07%). The family Hydropsychidae was the most prominent and the most abundant
    aquatic insect taxa followed by Chironomidae. Water temperature, dissolved oxygen and ammonia-nitrogen were similar
    at all sampling stations. Significant variations in pH, electrical conductivity, total dissolved solids, sulfate, nitrate-nitrogen
    and alkalinity were found at all sampling stations. Taxa richness and diversity index significantly correlated with dissolved
    oxygen, sulfate, nitrate-nitrogen and ammonia-nitrogen (p<0.05, p<0.01). Physicochemical data and biological data
    showed that mostly the surface water quality in Mae Tao and Mae Ku watersheds were within Type III of The Surface
    Water Standard for Agriculture and Water Quality for Protection of Aquatic Resources in Thailand.
    Matched MeSH terms: Temperature
  11. Yap JY, Hii CL, Ong SP, Lim KH, Abas F, Pin KY
    J Sci Food Agric, 2020 May;100(7):2932-2937.
    PMID: 32031257 DOI: 10.1002/jsfa.10320
    BACKGROUND: Papaya is widely grown in Malaysia and normally only the fruits are consumed. Other parts of the plant such as leaves, roots, bark, peel, seeds and pulp are also known to have medicinal properties and have been used to treat various diseases. Papaya leaves also contain flavonoids, alkaloids phenolic compounds and cynogenetic compounds, and are also reported to be able to treat dengue fever.

    RESULTS: Studies were carried out on drying of papaya leaves using hot air (60, 70 and 80 °C), shade and freeze drying. Effective diffusivities were estimated ranging from 2.09 × 10-12 to 2.18 × 10-12 m2 s-1 from hot air drying, which are within the order of magnitudes reported for most agricultural and food products. The activation energy to initiate drying showed a relatively low value (2.11 kJ mol-1 ) as a result of the thin leave layer that eased moisture diffusion. In terms of total polyphenols content and antioxidant activities, freeze-dried sample showed a significantly higher (P 

    Matched MeSH terms: Hot Temperature
  12. Meng Y, Ling TC, Mo KH, Tian W
    Sci Total Environ, 2019 Jun 25;671:827-837.
    PMID: 30947055 DOI: 10.1016/j.scitotenv.2019.03.411
    Carbonation for the curing of cement-based materials has been gaining increased attention in recent years, especially in light of emerging initiatives to reduce carbon dioxide (CO2) emissions. Carbonation method or CO2 curing is founded on the basis of the reaction between CO2 and cement products to form thermally stable and denser carbonate, which not only improves the physical and mechanical properties of cement-based materials, but also has the ability to utilize and store CO2 safely and permanently. This study aims to assess the effect of CO2 curing technology on the high-temperatures performance of cement blocks. Upon molding, dry-mix cement blocks were cured under statically accelerated carbonation condition (20% CO2 concentration with 70% relative humidity) for 28 days, followed by exposure to elevated temperatures of 300 °C to 800 °C in order to comprehensively study the principal phase changes and decompositions of cement hydrates. The results indicated that CO2 curing improved the performance of cement blocks, such as enhancement in the residual compressive strength and reducing the sorptivity. At 600 °C, the scanning electron microscopy (SEM) revealed a denser microstructure while thermal analisis and X-ray diffraction (XRD) analysis also clearly demonstrated that higher amounts of calcium carbonate were present in the cement blocks after CO2 curing, suggesting better high-temperature performance compared to natural cured cement blocks. In general, an improved high-temperature performance, specifically at 600 °C of the dry-mixed cement blocks was demonstrated by adopting the CO2 curing technology. This confirms the potential of utilizing CO2 curing technology in not only improving quality of cement blocks, new avenue for storing of CO2 in construction material can be realized at the same time.
    Matched MeSH terms: Temperature
  13. Mincham G, Baldock KL, Rozilawati H, Williams CR
    Epidemiol Infect, 2019 01;147:e125.
    PMID: 30869038 DOI: 10.1017/S095026881900030X
    Dengue infection in China has increased dramatically in recent years. Guangdong province (main city Guangzhou) accounted for more than 94% of all dengue cases in the 2014 outbreak. Currently, there is no existing effective vaccine and most efforts of control are focused on the vector itself. This study aimed to evaluate different dengue management strategies in a region where this disease is emerging. This work was done by establishing a dengue simulation model for Guangzhou to enable the testing of control strategies aimed at vector control and vaccination. For that purpose, the computer-based dengue simulation model (DENSiM) together with the Container-Inhabiting Mosquito Simulation Model (CIMSiM) has been used to create a working dengue simulation model for the city of Guangzhou. In order to achieve the best model fit against historical surveillance data, virus introduction scenarios were run and then matched against the actual dengue surveillance data. The simulation model was able to predict retrospective outbreaks with a sensitivity of 0.18 and a specificity of 0.98. This new parameterisation can now be used to evaluate the potential impact of different control strategies on dengue transmission in Guangzhou. The knowledge generated from this research would provide useful information for authorities regarding the historic patterns of dengue outbreaks, as well as the effectiveness of different disease management strategies.
    Matched MeSH terms: Temperature
  14. Zhou JN, Lin BR, Shen HF, Pu XM, Chen ZN, Feng JJ
    Plant Dis, 2012 May;96(5):760.
    PMID: 30727539 DOI: 10.1094/PDIS-11-11-0942
    Phalaenopsis orchids, originally from tropical Asia, are mainly planted in Thailand, Singapore, Malaysia, the Philippines, and Taiwan and have gained popularity from consumers all over the world. The cultivation area of Phalaenopsis orchids has been rising and large-scale bases have been established in mainland China, especially South China because of suitable environmental conditions. In September 2011, a soft rot of Phalaenopsis aphrodita was found in a Phalaenopsis planting base in Guangzhou with an incidence of ~15%. Infected plants initially showed water-soaked, pale-to-dark brown pinpoint spots on leaves that were sometimes surrounded by a yellow halo. Spots expanded rapidly with rising humidity and temperatures, and in a few days, severely extended over the blade with a light tan color and darker brown border. Lesions decayed with odorous fumes and tissues collapsed with inclusions exuding. The bacterium advanced to the stem and pedicle. Finally, leaves became papery dry and the pedicles lodged. Six diseased samples were collected, and bacteria were isolated from the edge of symptomatic tissues after sterilization in 0.3% NaOCl for 10 min, rinsing in sterile water three times, and placing on nutrient agar for culture. Twelve representative isolates were selected for further characterization. All strains were gram negative, grew at 37°C, were positive for indole production, and utilized malonate, glucose, and sucrose but not glucopyranoside, trehalose, or palatinose. Biolog identification (version 4.20.05, Hayward, CA) was performed and Pectobacterium chrysanthemi (SIM 0.868) was confirmed for the tested isolates (transfer to genus Dickeya). PCR was used to amplify the 16S rDNAgene with primers 27f and 1492r, dnaX gene with primers dnaXf and dnaXr (3), and gyrB gene with primers gyrBf (5'-GAAGGYAAAVTKCATCGTCAGG-3') and gyrB-r1 (5'-TCARATATCRATATTCGCYGCTTTC-3') designed on the basis of the published gyrB gene sequences of genus Dickeya. BLASTn was performed online, and phylogeny trees (100% bootstrap values) were created by means of MEGA 5.05 for these gene sequences, respectively. Results commonly showed that the representative tested strain, PA1, was most homologous to Dickeya dieffenbachiae with 98% identity for 16S rDNA(JN940859), 97% for dnaX (JN989971), and 96% for gyrB (JN971031). Thus, we recommend calling this isolate D. dieffenbachiae PA1. Pathogenicity tests were conducted by injecting 10 P. aphrodita seedlings with 100 μl of the bacterial suspension (1 × 108 CFU/ml) and another 10 were injected with 100 μl of sterile water as controls. Plants were inoculated in a greenhouse at 28 to 32°C and 90% relative humidity. Soft rot symptoms were observed after 2 days on the inoculated plants, but not on the control ones. The bacterium was isolated from the lesions and demonstrated identity to the inoculated plant by the 16S rDNA sequence comparison. Previously, similar diseases of P. amabilis were reported in Tangshan, Jiangsu, Zhejiang, and Wuhan and causal agents were identified as Erwinia spp. (2), Pseudomonas grimontii (1), E. chrysanthemi, and E. carotovora subsp. carovora (4). To our knowledge, this is the first report of D. dieffenbachiae causing soft rot disease on P. aphrodita in China. References: (1) X. L. Chu and B. Yang. Acta Phytopathol. Sin. 40:90, 2010. (2) Y. M. Li et al. J. Beijing Agric. Coll. 19:41, 2004. (3) M. Sławiak et al. Eur. J. Plant Pathol. 125:245, 2009. (4) Z. Y. Wu et al. J. Zhejiang For. Coll. 27:635, 2010.
    Matched MeSH terms: Temperature
  15. Ibrahim NUA, Abd Aziz S, Hashim N, Jamaludin D, Khaled AY
    J Food Sci, 2019 Apr;84(4):792-797.
    PMID: 30861127 DOI: 10.1111/1750-3841.14436
    Total polar compounds (TPC) and free fatty acids (FFA) are important indicators in evaluating the quality of frying oil. Conventional methods to determine TPC and FFA are often time consuming, involved laboratory analyses which required skilled personnel and used substantial amount of harmful solvent. In this study, dielectric spectroscopy technique was used to investigate the relation between dielectric property of refined, bleached and deodorized palm olein (RBDPO) during deep frying with TPC and FFA. In total, 150 batches of French fries were intermittently fried at 185 ± 5 °C for 7 hr a day over 5 consecutive days. A total of 30 frying oil samples were collected. The dielectric property of frying oil samples were measured using impedance analyzer with frequencies ranging from 100 Hz to 10 MHz. The TPC of frying oil samples were measured with a Testo 270, while the FFA analysis was done using Malaysian Palm Oil Board (MPOB) test method. Results showed that dielectric constant, TPC and FFA of RBDPO increased as the frying time increased. Dielectric constant increased from 3.09 to 3.17, while TPC and FFA increased from 9.96 to 19.52 and from 0.08% to 0.36%, respectively. Partial least square (PLS) analysis produced good prediction of TPC and FFA with the application of genetic algorithm (GA). Model developed for prediction of TPC and FFA yielded highly significant correlation with R2 of 0.91 and 0.95, respectively and both had root mean square error in cross-validation (RMSECV) of 1.06%. This study demonstrates the potential of dielectric spectroscopy in monitoring palm olein degradation during frying. PRACTICAL APPLICATION: The application of dielectric spectroscopy to detect degradation of palm olein during frying was studied. The dielectric property of palm olein during frying has successfully correlated with TPC and FFA. The model developed in this study could be used for the development of a sensing system for palm olein degradation monitoring.
    Matched MeSH terms: Hot Temperature
  16. Nur Fitrah Che Nan, Norhazlin Zainuddin, Mansor Ahmad
    MyJurnal
    Carboxymethylcellulose (CMC) is a water-soluble polymer, which is widely used in various
    fields such as food additives, textiles, pharmaceuticals and cosmetics. In this study, hydrogel
    was prepared from CMC by using calcium chloride as a crosslinking agent. Optimization
    of the reaction was done through investigation of four different parameters which had
    different percentage of CMC (w/v), percentage of calcium chloride (w/v), reaction time and
    temperature. The gel content and swelling properties of the CMC hydrogel were studied.
    The highest gel content was 85.33% at 7% of CMC (w/v) with 2% of calcium chloride (w/v)
    in 24 hours reaction time at room temperature. The gel content increased with the increasing
    concentration of CMC and CaCl2. This was due to the higher number of functional groups
    of COO- that were available in more concentrated CMC which could crosslink with CaCl2
    to give higher gel content. Increasing the percentage of CaCl2 will increase the electrostatic
    attraction between anionic charges of polymer chains and multivalent cation (Ca2+) that
    leads to increase in ionic crosslinking of CMC. The swelling properties of CMC hydrogel
    showed that the optimum degree of swelling was 45.33 (g/g). The swelling capacity of the
    hydrogel in water decreased with the increase of the gel content of CMC hydrogel. This
    could be due to the increase in the degree of crosslinking of the CMC hydrogel.
    Matched MeSH terms: Temperature
  17. Lee CS, Aroua MK, Wan Daud WA, Cognet P, Pérès Y, Ajeel MA
    Front Chem, 2019;7:110.
    PMID: 30931294 DOI: 10.3389/fchem.2019.00110
    In recent years, the rapid swift increase in world biodiesel production has caused an oversupply of its by-product, glycerol. Therefore, extensive research is done worldwide to convert glycerol into numerous high added-value chemicals i.e., glyceric acid, 1,2-propanediol, acrolein, glycerol carbonate, dihydroxyacetone, etc. Hydroxyl acids, glycolic acid and lactic acid, which comprise of carboxyl and alcohol functional groups, are the focus of this study. They are chemicals that are commonly found in the cosmetic industry as an antioxidant or exfoliator and a chemical source of emulsifier in the food industry, respectively. The aim of this study is to selectively convert glycerol into these acids in a single compartment electrochemical cell. For the first time, electrochemical conversion was performed on the mixed carbon-black activated carbon composite (CBAC) with Amberlyst-15 as acid catalyst. To the best of our knowledge, conversion of glycerol to glycolic and lactic acids via electrochemical studies using this electrode has not been reported yet. Two operating parameters i.e., catalyst dosage (6.4-12.8% w/v) and reaction temperature [room temperature (300 K) to 353 K] were tested. At 353 K, the selectivity of glycolic acid can reach up to 72% (with a yield of 66%), using 9.6% w/v catalyst. Under the same temperature, lactic acid achieved its highest selectivity (20.7%) and yield (18.6%) at low catalyst dosage, 6.4% w/v.
    Matched MeSH terms: Temperature
  18. Tran TV, Nguyen DTC, Le HTN, Bach LG, Vo DN, Hong SS, et al.
    Nanomaterials (Basel), 2019 Feb 10;9(2).
    PMID: 30744163 DOI: 10.3390/nano9020237
    Chloramphenicol (CAP) is commonly employed in veterinary clinics, but illegal and uncontrollable consumption can result in its potential contamination in environmental soil, and aquatic matrix, and thereby, regenerating microbial resistance, and antibiotic-resistant genes. Adsorption by efficient, and recyclable adsorbents such as mesoporous carbons (MPCs) is commonly regarded as a "green and sustainable" approach. Herein, the MPCs were facilely synthesized via the pyrolysis of the metal⁻organic framework Fe₃O(BDC)₃ with calcination temperatures (x °C) between 600 and 900 °C under nitrogen atmosphere. The characterization results pointed out mesoporous carbon matrix (MPC700) coating zero-valent iron particles with high surface area (~225 m²/g). Also, significant investigations including fabrication condition, CAP concentration, effect of pH, dosage, and ionic strength on the absorptive removal of CAP were systematically studied. The optimal conditions consisted of pH = 6, concentration 10 mg/L and dose 0.5 g/L for the highest chloramphenicol removal efficiency at nearly 100% after 4 h. Furthermore, the nonlinear kinetic and isotherm adsorption studies revealed the monolayer adsorption behavior of CAP onto MPC700 and Fe₃O(BDC)₃ materials via chemisorption, while the thermodynamic studies implied that the adsorption of CAP was a spontaneous process. Finally, adsorption mechanism including H-bonding, electrostatic attraction, π⁻π interaction, and metal⁻bridging interaction was proposed to elucidate how chloramphenicol molecules were adsorbed on the surface of materials. With excellent maximum adsorption capacity (96.3 mg/g), high stability, and good recyclability (4 cycles), the MPC700 nanocomposite could be utilized as a promising alternative for decontamination of chloramphenicol antibiotic from wastewater.
    Matched MeSH terms: Temperature
  19. Hawa MM, Salleh B, Latiffah Z
    Plant Dis, 2009 Sep;93(9):971.
    PMID: 30754569 DOI: 10.1094/PDIS-93-9-0971C
    Red-fleshed dragon fruit (Hylocereus polyrhizus [Weber] Britton & Rose) is a newly introduced and potential crop in the Malaysian fruit industry. Besides its nutritious value, the fruit is being promoted as a health crop throughout Southeast Asia. In April of 2007, a new disease was observed in major plantations of H. polyrhizus throughout five states (Kelantan, Melaka, Negeri Sembilan, Penang, and Perak) in Malaysia with 41 and 25% disease incidence and severity, respectively. Stems of H. polyrhizus showed spots or small, circular, faint pink-to-beige necrotic lesions that generally coalesced as symptoms progressed. Symptom margins of diseased stem samples were surface sterilized with a 70% alcohol swab, cut into small blocks (1.5 × 1.5 × 1.5 cm), soaked in 1% sodium hypochlorite (NaOCI) for 3 min, and rinsed in several changes of sterile distilled water (each 1 min). The surface-sterilized tissues were placed onto potato dextrose agar (PDA) and incubated under alternating 12-h daylight and black light for 7 days. A fungus was consistently isolated from the stems of symptomatic H. polyrhizus and identified as Curvularia lunata (Wakker) Beodijn (1-3) that showed pale brown multicelled conidia (phragmoconidia; three to five celled) that formed apically through a pore (poroconidia) in sympodially, elongating, geniculated conidiophores. Conidia are relatively fusiform, cylindrical, or slightly curved, with one of the central cells being larger and darker (26.15 ± 0.05 μm). All 25 isolates of C. lunata obtained from diseased H. polyrhizus are deposited at the Culture Collection Unit, Universiti Sains Malaysia and available on request. Isolates were tested for pathogenicity by injecting conidial suspensions (1 × 106 conidia/ml) and pricking colonized toothpicks on 25 healthy H. polyrhizus stems. Controls were treated with sterile distilled water and noncolonized toothpicks. All inoculated plants and controls were placed in a greenhouse with day and night temperatures of 30 to 35°C and 23 to 30°C, respectively. Development of external symptoms on inoculated plants was observed continuously every 2 days for 2 weeks. Two weeks after inoculation, all plants inoculated with all isolates of C. lunata developed stem lesions similar to those observed in the field. No symptoms were observed on the control plants and all remained healthy. C. lunata was reisolated from 88% of the inoculated stems, completing Koch's postulates. The pathogenicity test was repeated with the same results. To our knowledge, this is the first report of C. lunata causing a disease on H. polyrhizus. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, England, 1971. (2) R. R. Nelson and F. A. Hassis. Mycologia 56:316, 1964. (3) C. V. Subramanian. Fungi Imperfecti from Madras V. Curvularia. Proc. Indian Acad. Sci. 38:27, 1955.
    Matched MeSH terms: Temperature
  20. Shamsuri AA, Md Jamil SNA
    Materials (Basel), 2020 Apr 17;13(8).
    PMID: 32316400 DOI: 10.3390/ma13081885
    Polybutylene succinate (PBS)/rice starch (RS) blends were prepared via the hot-melt extrusion technique through the usage of a twin-screw extruder without and containing ionic liquid-based surfactants (ILbS). Two types of ILbS were used, specifically, 1-dodecyl-3-methylimidazolium trifluoromethanesulfonate, [C12mim][OTf] and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C12mim][NTf2] were mixed into the PBS/RS blends at the different contents (0-8 wt.%). The tensile and flexural results showed that the blends containing ILbS have a high tensile extension and tensile energy compared to the blend without ILbS. The blends containing ILbS also have a high flexural extension compared with the blend without ILbS. The blends containing [C12mim][NTf2] have a significant improvement in the tensile energy (up to 239%) and flexural extension (up to 17%) in comparison with the blends containing [C12mim][OTf]. The FTIR spectra demonstrated that the presence of ILbS in the blends generated the intermolecular interactions (ion-dipole force and hydrophobic-hydrophobic interaction) between PBS and RS. The DSC results exhibited that the melting points of the prepared blends are decreased with the addition of ILbS. However, the TGA results showed that the thermal decomposition of the blends containing ILbS are higher than the blend without ILbS. The values of decomposition temperature were 387.4 °C, 381.8 °C, and 378.6 °C of PBS/RS-[C12mim][NTf2], PBS/RS-[C12mim][OTf], and PBS/RS, respectively. In conclusion, the ILbS could significantly improve the physicochemical properties of the PBS/RS blends by acting as a compatibilizer.
    Matched MeSH terms: Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links