Displaying publications 1921 - 1940 of 3446 in total

Abstract:
Sort:
  1. Nur Hafizah Zakaria, Husnul Azan Tajarudin, Mohd Sharizal Mohd Sapingi, Mohamad Fared Murshed
    Scientific Research Journal, 2017;14(1):42-52.
    MyJurnal
    This study focused on the identification of pathogenic bacteria in raw water intake and after sand filtration for drinking water treatment plant during flood event in 2014. The samples was collected from the Lubok Buntar Water Treatment Plant (WTP) and processed through bacterial isolation using chocolate agar as a media. The isolation process conducted based on serial samples dilution and streaking method prior to DNA extraction. Deoxyribonucleic acid (DNA) extraction kit was used to get selected bacteria DNA and further analysis using Polymerase Chain Reaction (PCR) test and electrophoresis to get DNA sequences. The Basic Local Alignment Search Tool (BLAST) analysis was employed to identify the species of the isolated bacteria. As a result, Pantoeaagglomerans and Enterobacter sp. were found in raw and filtered water sample and indicating the same family types. It was concluded that bacteria of the same species were found before and after sand filtration and need to be removed by disinfectant process. The findings also indicated that all the physicochemical parameters measured were within the values prescribed by the Interim National Water Quality Standard (INWQS).
    Matched MeSH terms: DNA
  2. Hee CS, Gun SC, Naidu R, Somnath SD, Radhakrishnan AK
    Int J Rheum Dis, 2008;11(2):148-154.
    DOI: 10.1111/j.1756-185X.2008.00350.x
    Aim: Recent studies have shown that single nucleotide polymorphisms (SNPs) have been identified within the promoter of the human interleukin-10 (IL-10) gene may participate in the pathogenesis of systemic lupus erythematosus (SLE) and may be related to disease activity. This is a pilot study that investigated the allelic and genotype frequencies of three SNPs in the human IL-10 gene promoter [rs1800896 (position: -1082G > A), rs1800871 (position: -824C > T) and rs1800872 (position: -597C > A)]among Malaysian SLE patients and normal subjects. Methods: Blood was drawn from 44 SLE patients and 44 age- and sex-matched healthy control subjects for DNA extraction. The SNPs were identified using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: There was no significant difference in the genotype and allele frequencies between the SLE patients and control subjects. A statistically significant difference was detected in the haplotype frequencies between the patients and controls (P = 0.004). Conclusions: There is a significant difference in the haplotype frequencies between the SLE patients and controls; the SNPs in the human IL-10 gene promoter could play an important role in the pathogenesis of SLE. © 2008 Asia Pacific League of Associations for Rheumatology and Blackwell Publishing Asia Pty Ltd.
    Matched MeSH terms: DNA
  3. Zahidin MA, Jalil NA, Naharuddin NM, Abd Rahman MR, Gani M, Abdullah MT
    Data Brief, 2019 Aug;25:104133.
    PMID: 31321260 DOI: 10.1016/j.dib.2019.104133
    Tarsier is an endangered nocturnal primate in the family Tarsiidae and is an endemic to Sundaic islands of Philippine (Carlito syrichta), Sulawesi (Tarsius tarsier-complex) and Borneo (Cephalopachus bancanus). Recent records indicated that most molecular studies were done on the Eastern Tarsier and little information for the other group of tarsiers. Here, we present a partial cytochrome b data set of C. bancanus in Sarawak, Malaysian Borneo. Standard mist nets were deployed at strategic locations in various habitat types. A total of 18 individuals were caught, measured and weighed. Approximately, 2 × 2 mm of tissue samples were taken and preserved in molecular grade alcohol. Out of 18, only 11 samples were screened with partial mtDNA (cytochrome b) and the DNA sequences were registered in the GenBank (accession numbers: KY794797-KY794807). Phylogenetic trees were constructed with 20 additional mtDNA sequences downloaded from GenBank. The data are valuable for the management authorities to regulate the type of management units for the metapopulation to sustain population genetics integrity of tarsiers in the range countries across the Sunda Shelf.
    Matched MeSH terms: DNA, Mitochondrial
  4. Dong Z, Morandini AC, Schiariti A, Wang L, Sun T
    PeerJ, 2019;7:e6191.
    PMID: 30643699 DOI: 10.7717/peerj.6191
    Background: It has been suggested that aquaculture ponds on the Chinese coast could act as breeding grounds for scyphozoans. Here, we present the first record of the scyphomedusa Phyllorhiza sp. in an aquaculture pond on the coast of the southern Yellow Sea, based on a combination of morphological characteristics and mitochondrial 16S DNA sequence data.

    Methods: A field survey was performed on June 29, 2017 in a pond used for culturing the shrimp Penaeus japonicus, located in the southern Yellow Sea, China. Jellyfish specimens were collected for morphological and genetic analysis. The morphological characters of the jellyfish specimens were compared to taxonomic literature. Additionally, phylogenetic analysis of the mitochondrial 16S fragments of these specimens were also conducted.

    Results: These specimens had the following morphological characters: hemispherical umbrella without scapulets; J-shaped oral arms; a single larger terminal club on each arm; bluish colored with a slightly expanded white tip; and mouthlets present only in the lower half to one-third of each arm. These morphological features of the medusae indicated that the specimens found in the shrimp culture ponds belong to the genus Phyllorhiza Agassiz, 1862, but did not match with the description of any of the known species of the genus Phyllorhiza. Phylogenetic analyses of the mtDNA 16S regions revealed that these specimens, together with Phyllorhiza sp. from Malaysian coastal waters, belong to a sister group of Phyllorhiza punctata. Juveniles and ephyrae of Phyllorhiza sp. were observed in the aquaculture pond. The mean density of Phyllorhiza sp. medusa in the surface water within the pond was estimated to be 0.05 individuals/m2.

    Discussion: Based on our observations of the gross morphology and molecular data, we state that the specimens collected in the aquaculture pond can be identified as Phyllorhiza sp. This is the first record of Phyllorhiza sp. in Chinese seas. Large scale dispersal through ballast water or the expansion of jellyfish aquarium exhibitions are possible pathways of invasion, but this needs to be confirmed in further studies.

    Matched MeSH terms: DNA, Mitochondrial
  5. Teoh PL, Liau M, Cheong BE
    Nutr Cancer, 2019;71(4):668-675.
    PMID: 30663402 DOI: 10.1080/01635581.2018.1559942
    Phyla nodiflora L. has been used as medicinal remedies for various ailments due to its antioxidant, anti-inflammatory, anti-bacterial, anti-tumor activity. Previously, we found that the plant extracts induced DNA fragmentation in MCF-7. This study was to investigate the modes of action of P. nodiflora in inhibiting breast cancer cells using leaf ethyl acetate (EA leaf), stem ethyl acetate (EA stem) and stem methanol (Met stem) extracts. The MTT assay showed that the anti-proliferative effects of P. nodiflora extracts were selective towards MCF-7 with a minimal effect on MCF10A. Morphological changes such as cell shrinkage and nuclear condensation were observed in treated cells. We found that induction of apoptosis by EA leaf and EA stem was mitochondrial-dependent while loss of mitochondrial membrane potential was not found in Met stem-treated cells. In addition, the expression levels of AIFM1, CASP9, CFLAR, and IGF1R were altered after treatment. Decreased BCL-2 expression was found in treated cells while BAX and caspases' expression was upregulated or maintained. All extracts caused perturbation of cell cycle at S phase by dysregulating the expression of cell cycle regulators such as CDKs and cyclins. Our findings indicate that P. nodiflora inhibits MCF-7 cells by inducing apoptosis and perturbing cell cycle.
    Matched MeSH terms: DNA Fragmentation
  6. Leong KF, Sato R, Oh GGK, Surana U, Pramono ZAD
    Indian J Dermatol, 2019 9 24;64(5):400-403.
    PMID: 31543536 DOI: 10.4103/ijd.IJD_44_18
    Blau syndrome (BS) is a very rare autosomal dominant juvenile inflammatory disorder caused by mutation in nucleotide-binding oligomerization domain containing 2 (NOD2). Usually, dermatitis is the first symptom that appears in the 1st year of life. About 220 BS cases with confirmed NOD2 mutation have been reported. However, the rarity and lack of awareness of the disease, especially in the regions where genetic tests are very limited, often result in late diagnosis and misdiagnosis. Here, we report a de novo BS case from Malaysia, which may be the first report from southeast Asia. PCR and DNA sequencing of peripheral blood mononuclear cells were performed to screen the entire coding region of NOD2 gene. A heterozygous c.1000C>T transition in exon 4, p. R334W, of the NOD2 gene was identified in the patient. This report further reaffirms the ubiquitousness of the disease and recurrency of p. R334W mutation.
    Matched MeSH terms: Sequence Analysis, DNA
  7. Aina GQ, Erwanto Y, Hossain M, Johan MR, Ali ME, Rohman A
    J Adv Vet Anim Res, 2019 Sep;6(3):300-307.
    PMID: 31583226 DOI: 10.5455/javar.2019.f348
    Objective: The objective of this study was to employ real-time or quantitative polymerase chain reaction (q-PCR) using novel species specific primer (SSP) targeting on mitochondrial cytochrome-b of wild boar species (CYTBWB2-wb) gene for the identification of non-halal meat of wild boar meat (WBM) in meatball products.

    Materials and Methods: The novel SSP of CYTBWB2-wb was designed by our group using PRIMERQUEST and NCBI software. DNA was extracted using propanol-chloroform-isoamyl alcohol method. The designed SSP was further subjected for validation protocols using DNA isolated from fresh meat and from meatball, which include specificity test, determination of efficiency, limit of detection and repeatability, and application of developed method for analysis of commercially meatball samples.

    Results: The results showed that CYTBWB2-wb was specific to wild boar species against other animal species with optimized annealing temperature of 59°C. The efficiency of q-PCR obtained was 91.9% which is acceptable according to the Codex Allimentarius Commission (2010). DNA, with as low as 5 pg/μl, could be detected using q-PCR with primer of CYTBWB2-wb. The developed method was also used for DNA analysis extracted from meatball samples commercially available.

    Conclusion: q-PCR using CYTBWB2-wb primers targeting on mitochondrial cytochrome-b gene (forward: CGG TTC CCT CTT AGG CAT TT; Reverse: GGA TGA ACA GGC AGA TGA AGA) can be fruitfully used for the analysis of WBM in commercial meatball samples.

    Matched MeSH terms: DNA
  8. Khairul-Anuar MA, Mazumdar P, Lau SE, Tan TT, Harikrishna JA
    3 Biotech, 2019 Oct;9(10):371.
    PMID: 31588395 DOI: 10.1007/s13205-019-1898-y
    Isolation of high-quality RNA from Dendrobium flowers is challenging because of the high levels of pigment, polysaccharides, and polyphenols. In the present study, an efficient CTAB method for RNA extraction from the pigment-rich flowers of Dendrobium was optimised. The optimised method yielded high quantities of RNA (10.1-12.9 µg/g). Spectrophotometric values of A260/280 in the range of 2.2 to 2.4 and A260/230 values of 2.0 suggested that the isolated RNA was free of polyphenols, polysaccharides, and protein contaminants. RNA integrity numbers determined by microfluidics were in the range of 7.9-8.9 indicative of intact RNA. In the improved method, the addition of 3 M NaCl and 3% PVP-10 in the extraction buffer, followed by an incubation period of 45 min at 65 °C, eliminated most of the polysaccharides, polyphenolic compounds, and denatured protein. Extraction with phenol:chloroform:isoamyl alcohol (125:24:1) effectively removed pigments from the aqueous phase, while the precipitation of RNA with lithium chloride minimised the co-precipitation of protein, DNA, and polysaccharide and resulted in the extraction of high quality of RNA. The suitability of the RNA for downstream processing was confirmed via RT-PCR amplification of Chalcone synthase gene from cDNA prepared from RNA isolated from different developmental stages of the flower of a Dendrobium hybrid. The present method will be highly useful for the isolation of RNA from pigment, polyphenol, and polysaccharide-rich plant tissues.
    Matched MeSH terms: DNA, Complementary
  9. Sandvej K, Peh SC, Andresen BS, Pallesen G
    Blood, 1994 Dec 15;84(12):4053-60.
    PMID: 7994023
    In this study, we have sequenced the C-terminal part of the Epstein-Barr virus (EBV)-BNLF-1 gene encoding for the latent membrane protein-1 from tissues of EBV-positive Danish Hodgkin's disease (HD) and of Danish and Malaysian peripheral T-cell lymphomas (PTLs) and from tonsils of Danish infectious mononucleosis (IM). Our study showed that some of the 7 single-base mutations and the 30-bp deletion previously detected between codons of amino acid 322 and 366 in the BNLF-1 gene of the nasopharyngeal carcinoma cell line CAO were present in all Malaysian PTLs and in 60% of the Danish PTLs. In HD and the IM cases, the mutations were present in about 30%. The 30-bp deletion and the single base mutations occurred independently, and mutations were detectable in the majority of EBV type B-positive cases. These findings suggest that the 30-bp deletion and the 7 single-base mutations in the C-terminal part of the CAO-BNLF-1 gene do not characterize a new EBV type A substrain. Rather, some of the positions of single base mutations and the 30-bp deletion are hot spots that may have mutated independently through the evolution of EBV strains.
    Matched MeSH terms: DNA, Neoplasm/genetics; DNA, Viral/genetics
  10. Tan LP, Ng BK, Balraj P, Poh BH, Lim PK, Peh SC
    Hum Genet, 2005 Dec;118(3-4):539-40.
    PMID: 16521263
    Matched MeSH terms: DNA Mutational Analysis
  11. Brandão A, Eng KK, Rito T, Cavadas B, Bulbeck D, Gandini F, et al.
    Hum Genet, 2016 Apr;135(4):363-76.
    PMID: 26875094 DOI: 10.1007/s00439-016-1640-3
    There has been a long-standing debate concerning the extent to which the spread of Neolithic ceramics and Malay-Polynesian languages in Island Southeast Asia (ISEA) were coupled to an agriculturally driven demic dispersal out of Taiwan 4000 years ago (4 ka). We previously addressed this question using founder analysis of mitochondrial DNA (mtDNA) control-region sequences to identify major lineage clusters most likely to have dispersed from Taiwan into ISEA, proposing that the dispersal had a relatively minor impact on the extant genetic structure of ISEA, and that the role of agriculture in the expansion of the Austronesian languages was therefore likely to have been correspondingly minor. Here we test these conclusions by sequencing whole mtDNAs from across Taiwan and ISEA, using their higher chronological precision to resolve the overall proportion that participated in the "out-of-Taiwan" mid-Holocene dispersal as opposed to earlier, postglacial expansions in the Early Holocene. We show that, in total, about 20 % of mtDNA lineages in the modern ISEA pool result from the "out-of-Taiwan" dispersal, with most of the remainder signifying earlier processes, mainly due to sea-level rises after the Last Glacial Maximum. Notably, we show that every one of these founder clusters previously entered Taiwan from China, 6-7 ka, where rice-farming originated, and remained distinct from the indigenous Taiwanese population until after the subsequent dispersal into ISEA.
    Matched MeSH terms: DNA, Mitochondrial
  12. Ong AH, Vellayan S
    Zoo Biol, 2008 Jan;27(1):62-9.
    PMID: 19360604 DOI: 10.1002/zoo.20163
    The amplification of the highly conserved chromo-helicase-DNA binding region found in both the Z and W chromosome was evaluated with three sets of primers (P8/P2, 1237L/1272H and 2550F/2718R). DNA extracted from feathers through a simple boiling method was used to address its reliability in generating the sex-linked bands. All the bird samples, including the seven bird families that have not been reported previously, were successfully amplified with the primer set 2550F/2718R. The resulting polymerase chain reaction products showed clearly resolved fragments on a conventional agarose gel electrophoresis with size differences ranging from 80 to 540 bp between the two respective ZW gene copies. Although the P8/P2 primer was not as effective under the same conditions, it was able to produce well-resolved Z and W bands from bird species under the Antidea family, whereas the 2250F/2718R primer set only produced a single amplified fragment of a different size between the male and the female. Zoo Biol 27:62-69, 2008. (c) 2007 Wiley-Liss, Inc.
    Matched MeSH terms: DNA
  13. Han Z, Sun J, Lv A, Sung Y, Sun X, Shi H, et al.
    AMB Express, 2018 Apr 02;8(1):52.
    PMID: 29610998 DOI: 10.1186/s13568-018-0578-3
    A modified genomic DNA extraction method named the combination of lysozyme and ultrasonic lysis (CLU) method was used to analyze the fish intestinal microflora. In this method, the physical disruption and chemical lysis steps were combined, and some parameters in the key steps were adjusted. In addition, the results obtained by this method were compared with the results obtained by the Zirmil-beating cell disruption method and the QIAamp Fast DNA Stool Mini Kit. The OD260/OD280ratio and concentration of the DNA extracted using the CLU method were 2.02 and 282.8 µg/µL, respectively; when the incubation temperatures for lysozyme and RNase were adjusted to 37 °C, those values were 2.08 and 309.8 µg/µL, respectively. On the agarose gel, a major high-intensity, discrete band of more than 10 kb was found for the CLU method. However, the smearing intensity of degraded DNA was lower when the incubation temperatures were 60 °C for lysozyme and 30 °C for RNase than when incubation temperatures of 37 °C for lysozyme and 37 °C for RNase were used. The V3 variable region of the prokaryotic 16S rDNA was amplified, and an approximately 600-bp fragment was observed when the DNA extracted using the CLU method was used as a template. The CLU method is simple and cost effective, and it yields high-quality, unsheared, high-molecular-weight DNA, which is comparable to that obtained with a commercially available kit. The extracted DNA has potential for applications in critical molecular biology techniques.
    Matched MeSH terms: DNA, Ribosomal
  14. Tiong V, Thong KL, Yusof MY, Hanifah YA, Sam JI, Hassan H
    Jpn J Infect Dis, 2010 Sep;63(5):317-22.
    PMID: 20858996
    The genetic diversity and antimicrobial resistance rates of clinical Salmonella isolates (2007-2008) at the University of Malaya Medical Centre, Kuala Lumpur, were investigated and the genetic diversity of the isolates was determined by pulsed-field gel electrophoresis (PFGE) and repetitive extragenic palindromic (REP)-PCR. XbaI-PFGE analysis generated 57 profiles (Dice coefficient, F=0.08-1.00), whereas REP-PCR using the REP primer generated only 35 (F=0.34-1.00). PFGE was therefore the more discriminative and reproducible method for assessing the genetic diversity of salmonellae. The antibiograms of 78 Salmonella isolates were assessed against 19 antimicrobials using the disk diffusion method. Twenty serotypes were identified, with the most common being S. Enteritidis (18%) followed by S. Typhimurium (14%), S. Paratyphi B var Java (9%), S. Weltevreden (9%), and S. Corvallis (9%). A total of 38 resistant profiles were defined, with 53.8% of the isolates being resistant to three or more antimicrobials. The highest resistance rates were observed for cephalothin (55.1%), tetracycline (47.4%), and nalidixic acid (35.9%). The presence of multidrug-resistant Salmonella strains is a cause for concern as it may limit the treatment of severe salmonellosis. One multidrug-resistant S. Enteritidis strain was a putative extended-spectrum beta-lactamase producer, based on a double disk diffusion analysis, and was resistant to ceftriaxone (MIC>32 microg/mL). The data generated by this study will contribute towards epidemiological monitoring and investigations of Salmonella infections in Malaysia.
    Matched MeSH terms: DNA, Bacterial/chemistry; DNA Fingerprinting; Sequence Analysis, DNA
  15. Aye Aye Wynn, Nang Khin Mya
    MyJurnal
    Telomeres are specialized DNA complexes found at the end of all chromosomes. Human, as a member of eukaryotic cells, requires telomeres to maintain the length and the stability of chromosomes. Telomeres lose their non-coding DNA sequence to protect the genetic information on the chromosomes. Shortening of telomeres occurs in most somatic cells after sufficient cell division in a human lifetime. Normal haemopoietic cells or stem cells possess telomerase enzyme to restore telomeres and allow further replication. Telomere dysfunction is the origin of several degenerative disorders and also predispose to cancer. Roles of telomere in carcinogenesis and ageing related disorders are reviewed.
    Matched MeSH terms: DNA
  16. Arif SA, Hamilton RG, Yusof F, Chew NP, Loke YH, Nimkar S, et al.
    J Biol Chem, 2004 Jun 04;279(23):23933-41.
    PMID: 15024009
    Recurring reports of a highly allergenic 42-46-kDa protein in Hevea brasiliensis latex appeared to have been resolved with the discovery of a 43-kDa allergenic latex protein that was a homologue to patatin. However, the low to moderate prevalence of sensitization to the protein, designated Hev b 7, among latex-allergic patients could not adequately explain the frequent observations of the 42-46-kDa allergen. This led to the hypothesis that another, more allergenic protein of a similar molecular mass existed in Hevea latex. We report the isolation and purification of a 42.98-kDa latex glycoprotein showing homology to the early nodule-specific protein (ENSP) of the legumes Medicago sativa, Medicago truncatula, and Glycine max. The protein is allergenic, being recognized by immunoglobulin E (IgE) in sera from latex-allergic patients. The IgE epitope resides on the carbohydrate moiety of the protein, and the presence of a similar carbohydrate component on potato tuber patatin enables the latter to inhibit IgE binding to the ENSP homologue. The cDNA encoding the ENSP homologue was isolated by reverse transcription-PCR and cloned. The protein predicted from the cDNA sequence has 391 amino acids, the first 26 of which constitute a putative signal peptide. The deduced molecular mass of the mature protein is 40.40 kDa, while its isoelectric point is estimated at 5.0. The discrepancy between the predicted and observed molecular mass might be due to glycosylation, for which three N-sites on the protein are predicted. The purified protein showed lipase and esterase activities and may be involved in plant defense.
    Matched MeSH terms: DNA/chemistry; DNA, Complementary/metabolism
  17. Yeo FK, Hensel G, Vozábová T, Martin-Sanz A, Marcel TC, Kumlehn J, et al.
    Theor Appl Genet, 2014 Feb;127(2):325-37.
    PMID: 24247233 DOI: 10.1007/s00122-013-2221-7
    KEY MESSAGE: We developed 'Golden SusPtrit', i.e., a barley line combining SusPtrit's high susceptibility to non-adapted rust fungi with the high amenability of Golden Promise for transformation. Nonhost and partial resistance to Puccinia rust fungi in barley are polygenically inherited. These types of resistance are principally prehaustorial, show high diversity between accessions of the plant species and are genetically associated. To study nonhost and partial resistance, as well as their association, candidate gene(s) for resistance must be cloned and tested in susceptible material where SusPtrit would be the line of choice. Unfortunately, SusPtrit is not amenable to Agrobacterium-mediated transformation. Therefore, a doubled haploid (DH) mapping population (n = 122) was created by crossing SusPtrit with Golden Promise to develop a 'Golden SusPtrit', i.e., a barley line combining SusPtrit's high susceptibility to non-adapted rust fungi with the high amenability of Golden Promise for transformation. We identified nine genomic regions occupied by resistance quantitative trait loci (QTLs) against four non-adapted rust fungi and P. hordei isolate 1.2.1 (Ph.1.2.1). Four DHs were selected for an Agrobacterium-mediated transformation efficiency test. They were among the 12 DH lines most susceptible to the tested non-adapted rust fungi. The most efficiently transformed DH line was SG062N (11-17 transformants per 100 immature embryos). The level of non-adapted rust infection on SG062N is either similar to or higher than the level of infection on SusPtrit. Against Ph.1.2.1, the latency period conferred by SG062N is as short as that conferred by SusPtrit. SG062N, designated 'Golden SusPtrit', will be a valuable experimental line that could replace SusPtrit in nonhost and partial resistance studies, especially for stable transformation using candidate genes that may be involved in rust-resistance mechanisms.
    Matched MeSH terms: DNA Primers
  18. Kreike CM, Van Eck HJ, Lebot V
    Theor Appl Genet, 2004 Aug;109(4):761-8.
    PMID: 15156282
    The genetic diversity of 255 taro (Colocasia esculenta) accessions from Vietnam, Thailand, Malaysia,Indonesia, the Philippines, Papua New Guinea and Vanuatu was studied using AFLPs. Three AFLP primer combinations generated a total of 465 scorable amplification products. The 255 accessions were grouped according to their country of origin, to their ploidy level (diploid or triploid) and to their habitat--cultivated or wild. Gene diversity within these groups and the genetic distance between these groups were computed. Dendrograms were constructed using UPGMA cluster analysis. In each country, the gene diversity within the groups of wild genotypes was the highest compared to the diploid and triploid cultivars groups. The highest gene diversity was observed for the wild group from Thailand (0.19), the lowest for the diploid cultivars group from Thailand(0.007). In Malaysia there was hardly any difference between the gene diversity of the cultivars and wild groups, 0.07 and 0.08, respectively. The genetic distances between the diploid cultivars groups ranges from 0.02 to 0.10, with the distance between the diploid accessions from Thailand and Malaysia being the highest. The genetic distances between the wild groups range from 0.05 to 0.07. First, a dendrogram was constructed with only the diploids cultivars from all countries. The accessions formed clusters largely according to the country from which they originated. Two major groups of clusters were revealed, one group assembling accessions from Asian countries and the other assembling accessions from the Pacific. Surprisingly, the group of diploid cultivars from Thailand clustered among the Pacific countries. Secondly,a dendrogram was constructed with diploid cultivated,triploid cultivated and wild accessions. Again the division of the accessions into an Asian and a Pacific gene pool is obvious. The presence of two gene pools for cultivated diploid taro has major implications for the breeding and conservation of germplasm.
    Matched MeSH terms: DNA Primers
  19. Manjeri G, Muhamad R, Faridah QZ, Tan SG
    J Genet, 2012 Nov 22;91(3):e92-6.
    PMID: 23257301
    Matched MeSH terms: Sequence Analysis, DNA
  20. Lim SM, Mohamad Hanif EA, Chin SF
    Cell Biosci, 2021 Mar 20;11(1):56.
    PMID: 33743781 DOI: 10.1186/s13578-021-00570-z
    Autophagy is a conserved cellular process required to maintain homeostasis. The hallmark of autophagy is the formation of a phagophore that engulfs cytosolic materials for degradation and recycling to synthesize essential components. Basal autophagy is constitutively active under normal conditions and it could be further induced by physiological stimuli such as hypoxia, nutrient starvation, endoplasmic reticulum stress,energy depletion, hormonal stimulation and pharmacological treatment. In cancer, autophagy is highly context-specific depending on the cell type, tumour microenvironment, disease stage and external stimuli. Recently, the emerging role of autophagy as a double-edged sword in cancer has gained much attention. On one hand, autophagy suppresses malignant transformation by limiting the production of reactive oxygen species and DNA damage during tumour development. Subsequently, autophagy evolved to support the survival of cancer cells and promotes the tumourigenicity of cancer stem cells at established sites. Hence, autophagy is an attractive target for cancer therapeutics and researchers have been exploiting the use of autophagy modulators as adjuvant therapy. In this review, we present a summary of autophagy mechanism and controlling pathways, with emphasis on the dual-role of autophagy (double-edged sword) in cancer. This is followed by an overview of the autophagy modulation for cancer treatment and is concluded by a discussion on the current perspectives and future outlook of autophagy exploitation for precision medicine.
    Matched MeSH terms: DNA Damage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links