Displaying all 14 publications

Abstract:
Sort:
  1. Akhtar N, Khan N, Qayyum S, Qureshi MI, Hishan SS
    Front Public Health, 2022;10:869793.
    PMID: 36187628 DOI: 10.3389/fpubh.2022.869793
    The use of technology in the healthcare sector and its medical practices, from patient record maintenance to diagnostics, has significantly improved the health care emergency management system. At that backdrop, it is crucial to explore the role and challenges of these technologies in the healthcare sector. Therefore, this study provides a systematic review of the literature on technological developments in the healthcare sector and deduces its pros and cons. We curate the published studies from the Web of Science and Scopus databases by using PRISMA 2015 guidelines. After mining the data, we selected only 55 studies for the systematic literature review and bibliometric analysis. The study explores four significant classifications of technological development in healthcare: (a) digital technologies, (b) artificial intelligence, (c) blockchain, and (d) the Internet of Things. The novel contribution of current study indicate that digital technologies have significantly influenced the healthcare services such as the beginning of electronic health record, a new era of digital healthcare, while robotic surgeries and machine learning algorithms may replace practitioners as future technologies. However, a considerable number of studies have criticized these technologies in the health sector based on trust, security, privacy, and accuracy. The study suggests that future studies, on technological development in healthcare services, may take into account these issues for sustainable development of the healthcare sector.
  2. Khan H, Daraz N, Khan MN, Said M, Akhtar N, Badshah A, et al.
    Bioinorg Chem Appl, 2014;2014:916361.
    PMID: 25276113 DOI: 10.1155/2014/916361
    Five heteroleptic palladium(II) complexes of the general formula Pd(PR3)(tu)Cl2, where PR3 = triphenylphosphine (1), diphenyl-o-tolylphosphine (2), diphenyl-p-tolylphosphine (3), diphenyl-t-butylphosphine (4), and diphenyl-o-methoxyphenylphosphine (5), and tu = 1,3-bis(2-methoxyphenyl) thiourea. They all have been synthesized and characterized by various spectroscopic techniques (elemental analysis, FTIR, and (1)H NMR and the ligand 1,3-bis(2-methoxyphenyl) thiourea was synthesized by single crystal X-ray diffraction technique). The synthesized compounds were screened for their antibacterial activity against four strains of bacteria (Escherichia coli, Shigella flexneri, Staphylococcus aureus, and Bacillus subtilis). The antitumor potential was evaluated in terms of activity against brine shrimp eggs and DNA interaction. The mixed ligand complexes have exhibited moderate antibacterial activity and promising antitumor potential.
  3. Ahmed A, Saqlain M, Akhtar N, Hashmi F, Blebil A, Dujaili J, et al.
    Health Qual Life Outcomes, 2021 Feb 08;19(1):48.
    PMID: 33557861 DOI: 10.1186/s12955-021-01693-0
    BACKGROUND: Reliable Health-Related Quality of Life (HRQoL) assessment will be useful in identifying health issues and in identifying health care actions. Due to the lack of a psychometrically valid tool in Urdu, we aim to translate and examine the psychometric and cross-cultural adaptation of WHOQOL HIV Bref among people living with HIV/AIDS (PLWHA) in Pakistan.

    METHODS: The standard forward-backwards translation technique was used to convert English version of the WHOQOL HIV Bref into Urdu. After cognitive debriefing, final Urdu version of instrument was developed. Based on the principle of at least 5 subjects for each item, a sample of 182 patients was used using a universal random sampling technique from the Pakistan Institute of Medical Sciences, Islamabad. The Cronbach's alpha and intra-class correlation coefficients (ICC) were estimated to assess internal validity and reliability of the translated version. Exploratory factor analysis was carried out to determine the factor structure and independent associations between the instrument domains and CD-4T-cell count were assessed using multivariable linear regression RESULTS: High Cronbach alpha 0.93 was found for all WHOQOL HIV Bref facets. The test-retest reliability demonstrated a statistically significant ICC ranged from 0.88 to 0.98 (p 

  4. Aminuddin MIKA, Shuaib M, Akhtar N, Setiawan NI, Warmada IW
    PMID: 37310597 DOI: 10.1007/s11356-023-27931-0
    The rock formation of late Cretaceous-Paleocene metapsammite and metagranite found across Luk Ulo Complex indicated boulders with diameter of approximately 1 m and rounded shape along Luk Ulo River, Indonesia. However, less research found on geochronology and geochemistry has been conducted in study area, and such rocks require comprehensive understanding of magmatism and tectonic environment of Central Java, Indonesia. Therefore, the main objective of this study is to address the geochemical and geochronological age histories across Central Java, Indonesia, using U-Pb zircon dating technique. Generally, most common types of rocks were observed which composed of hornblende and garnet-bearing metapsammite and metagranite. The geochemical study showed that protolith of rocks with hornblende was identified as Cordilleran granitoid (I-type), which originated from magmatic arc with basaltic differentiation. Furthermore, protolith of rocks containing garnet was categorized as Caledonian granitoid (S-type), which is caused by post-collisional orogeny. The cluster observations of magmatic zircons reveal their magmatic ages, which vary from 67.00 ± 1.2 to 69.10 ± 0.91 Ma (late Cretaceous), whereas ages of inherited zircons ranged from 100 ± 5 to 437 ± 13 Ma (early Cretaceous to Silurian). Estimated periods of partial melting were found between 100 ± 5 Ma and 118 ± 4 Ma (early Cretaceous). Comparing the zircon ages of Luk Ulo with the zircon ages from the Sundaland regions reveals that the age distribution patterns are incredibly similar; the peak ages dispersed between the Cretaceous and Triassic periods, as well as Sundaland region was the source of the materials.
  5. Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, A Elsayed E, et al.
    Molecules, 2021 Mar 12;26(6).
    PMID: 33809305 DOI: 10.3390/molecules26061569
    Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.
  6. Irfan M, Irfan M, Shah SM, Baig N, Saleh TA, Ahmed M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109769.
    PMID: 31349444 DOI: 10.1016/j.msec.2019.109769
    Non-covalent electrostatic interaction between amide nitrogen and carbonyl carbon of shorter chain length of polyvinylpyrrolidone (PVP-k25) was developed with in-house carboxylic oxidized multiwall carbon nanotubes (O-MWCNT) and then blended with Polyethersulfone (PES) polymer. FTIR analysis was utilized to confirm bonding nature of nano-composites (NCs) of O-MWCNT/PVP-k25 and casting membranes. Non-solvent induces phase separation process developed regular finger-like channels in composite membranes whereas pristine PES exhibited spongy entities as studied by cross sectional analysis report of FESEM. Further, FESEM instrument was also utilized to observe the dispersion of O-MWCNT/PVP based nanocomposite (NCs) with PES and membranes leaching phenomena analysis. Contact angle experiments described 24% improvement of hydrophilic behaviour, leaching ratio of additives was reduced to 1.89%, whereas water flux enhanced up to 6 times. Bovine serum albumin (BSA) and lysozyme based antifouling analysis shown up to 25% improvement, whereas 84% of water flux was regained after protein fouling than pristine PES. Anticoagulant activity was reported by estimating prothrombin, thrombin, plasma re-calcification times and production of fibrinogen cluster with platelets-adhesions photographs and hemolysis experiments. Composite membranes exhibited 3.4 and 3 times better dialysis clearance ratios of urea and creatinine solutes as compared to the raw PES membrane.
  7. Hashmi S, Khan S, Shafiq Z, Taslimi P, Ishaq M, Sadeghian N, et al.
    Bioorg Chem, 2021 02;107:104554.
    PMID: 33383322 DOI: 10.1016/j.bioorg.2020.104554
    With the fading of 'one drug-one target' approach, Multi-Target-Directed Ligands (MTDL) has become a central idea in modern Medicinal Chemistry. The present study aimed to design, develop and characterize a novel series of 4-(Diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) and evaluates their biological activity against cholinesterase, carbonic anhydrases and α-glycosidase enzymes. The hCA I isoform was inhibited by these novel 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones (3a-p) in low nanomolar levels, the Ki of which differed between 407.73 ± 43.71 and 1104.11 ± 80.66 nM. Against the physiologically dominant isoform hCA II, the novel compounds demonstrated Kis varying from 323.04 ± 56.88 to 991.62 ± 77.26 nM. Also, these novel 4-(diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) effectively inhibited AChE, with Ki values in the range of 121.74 ± 23.52 to 548.63 ± 73.74 nM. For BChE, Ki values were obtained with in the range of 132.85 ± 12.53 to 618.53 ± 74.23 nM. For α-glycosidase, the most effective Ki values of 3b, 3k, and 3g were with Ki values of 77.85 ± 10.64, 96.15 ± 9.64, and 124.95 ± 11.44 nM, respectively. We have identified inhibition mechanism of 3b, 3g, 3k, and 3n on α-glycosidase AChE, hCA I, hCA II, and BChE enzyme activities. Hydrazine-1-carbothioamide and hydroxybenzylidene moieties of compounds play an important role in the inhibition of AChE, hCA I, and hCA II enzymes. Hydroxybenzylidene moieties are critical for inhibition of both BChE and α-glycosidase enzymes. The findings of in vitro and in silico evaluations indicate 4-(diethylamino)-salicylaldehyde-based thiosemicarbazone scaffold to be a promising hit for drug development for multifactorial diseases like Alzheimer's disease.
  8. Bostan N, Ilyas N, Akhtar N, Mehmood S, Saman RU, Sayyed RZ, et al.
    Environ Res, 2023 Oct 01;234:116523.
    PMID: 37422115 DOI: 10.1016/j.envres.2023.116523
    Plastic is now considered part and parcel of daily life due to its extensive usage. Microplastic (MP) pollution is becoming a growing worry and has been ranked as the second most critical scientific problem in the realm of ecology and the environment. Microplastics are smaller in size than the plastic and are more harmful to biotic and as well as abiotic environments. The toxicity of microplastic depends upon its shape and size and increases with an increase in its adsorption capacity and their toxicity. The reason behind their harmful nature is their small size and their large surface area-to-volume ratio. Microplastic can get inside fruits, vegetables, seeds, roots, culms, and leaves. Hence microplastic enters into the food chain. There are different entry points for microplastic to enter into the food chain. Such sources can include polluted food, beverages, spices, plastic toys, and household (packing, cooking, etc.). The concentration of microplastic in terrestrial environments is increasing day by day. Microplastic causes the destruction of soil structure; destroys soil microbiota, cause depletion of nutrients in the soil, and their absorption by plants decreases plant growth. Apart from other environmental problems caused by microplastic, human health is also badly affected by microplastic pollution present in the terrestrial environment. The presence of microplastics in the human body has been confirmed. Microplastic enters into the body of humans in different possible ways. According to their way of entering the body, microplastics cause different diseases in humans. MPs also cause negative effects on the human endocrine system. At the ecosystem level, the impacts of microplastic are interconnected and can disrupt ecological processes. Although recently different papers have been published on several aspects of the microplastic present in the terrestrial environment but there is no complete overview that focus on the interrelationship of MPs in plants, and soil and their effect on higher animals like a human. This review provides a completely detailed overview of existing knowledge about sources, occurrences, transport, and effects of microplastic on the food chain and soil quality and their ecotoxicological effects on plants and humans.
  9. Rubnawaz S, Kayani WK, Akhtar N, Mahmood R, Khan A, Okla MK, et al.
    Molecules, 2021 Aug 11;26(16).
    PMID: 34443462 DOI: 10.3390/molecules26164874
    Ajuga bracteosa Wall. ex Benth. is an endangered medicinal herb traditionally used against different ailments. The present study aimed to create new insight into the fundamental mechanisms of genetic transformation and the biological activities of this plant. We transformed the A. bracteosa plant with rol genes of Agrobacterium rhizogenes and raised the regenerants from the hairy roots. These transgenic regenerants were screened for in vitro antioxidant activities, a range of in vivo assays, elemental analysis, polyphenol content, and different phytochemicals found through HPLC. Among 18 polyphenolic standards, kaempferol was most abundant in all transgenic lines. Furthermore, transgenic line 3 (ABRL3) showed maximum phenolics and flavonoids content among all tested plant extracts. ABRL3 also demonstrated the highest total antioxidant capacity (8.16 ± 1 μg AAE/mg), total reducing power, (6.60 ± 1.17 μg AAE/mg), DPPH activity (IC50 = 59.5 ± 0.8 μg/mL), hydroxyl ion scavenging (IC50 = 122.5 ± 0.90 μg/mL), and iron-chelating power (IC50 = 154.8 ± 2 μg/mL). Moreover, transformed plant extracts produced significant analgesic, anti-inflammatory, anticoagulant, and antidepressant activities in BALB/c mice models. In conclusion, transgenic regenerants of A. bracteosa pose better antioxidant and pharmacological properties under the effect of rol genes as compared to wild-type plants.
  10. Ahmad HI, Nadeem MF, Shoaib Khan HM, Sarfraz M, Saleem H, Khurshid U, et al.
    Front Pharmacol, 2021;12:708618.
    PMID: 34776946 DOI: 10.3389/fphar.2021.708618
    Sphaeranthus indicus L. is a medicinal herb having widespread traditional uses for treating common ailments. The present research work aims to explore the in-depth phytochemical composition and in vitro reactivity of six different polarity solvents (methanol, n-hexane, benzene, chloroform, ethyl acetate, and n-butanol) extracts/fractions of S. indicus flowers. The phytochemical composition was accomplished by determining total bioactive contents, HPLC-PDA polyphenolic quantification, and UHPLC-MS secondary metabolomics. The reactivity of the phenolic compounds was tested through the following biochemical assays: antioxidant (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelation) and enzyme inhibition (AChE, BChE, α-glucosidase, α-amylase, urease, and tyrosinase) assays were performed. The methanol extract showed the highest values for phenolic (94.07 mg GAE/g extract) and flavonoid (78.7 mg QE/g extract) contents and was also the most active for α-glucosidase inhibition as well as radical scavenging and reducing power potential. HPLC-PDA analysis quantified rutin, naringenin, chlorogenic acid, 3-hydroxybenzoic acid, gallic acid, and epicatechin in a significant amount. UHPLC-MS analysis of methanol and ethyl acetate extracts revealed the presence of well-known phytocompounds; most of these were phenolic, flavonoid, and glycoside derivatives. The ethyl acetate fraction exhibited the highest inhibition against tyrosinase and urease, while the n-hexane fraction was most active for α-amylase. Moreover, principal component analysis highlighted the positive correlation between bioactive compounds and the tested extracts. Overall, S. indicus flower extracts were found to contain important phytochemicals, hence could be further explored to discover novel bioactive compounds that could be a valid starting point for future pharmaceutical and nutraceuticals applications.
  11. Ur-Rehman A, Khan SG, Naqvi SAR, Ahmad M, Akhtar N, Bokhari TH, et al.
    Pak J Pharm Sci, 2021 Jan;34(1(Special)):441-446.
    PMID: 34275792
    A series of new derivatives of 4-(2-chloroethyl)morpholine hydrochloride (5) were efficiently synthesized. Briefly, different aromatic organic acids (1a-f) were refluxed to acquire respective esters (2a-f) using conc. H2SO4 as catalyst. The esters were subjected to nucleophillic substitution by monohydrated hydrazine to acquire hydrazides (3a-f). The hydrazides were cyclized with CS2 in the presence of KOH to yield corresponding oxadiazoles (4a-f). Finally, the derivatives, 6a-f, were prepared by reacting oxadiazoles (4a-f) with 5 using NaH as activator. Structures of all the derivatives were elucidated through 1D-NMR EI-MS and IR spectral data. All these molecules were subjected to antibacterial and hemolytic activities and showed good antibacterial and hemolytic potential relative to the reference standards.
  12. Mehmood S, Ilyas N, Akhtar N, Chia WY, Shati AA, Alfaifi MY, et al.
    Environ Res, 2023 Jan 15;217:114784.
    PMID: 36395868 DOI: 10.1016/j.envres.2022.114784
    Vast amounts of plastic waste are causing serious environmental issues and urge to develop of new remediation methods. The aim of the study is to determine the role of inorganic (nitric acid), organic (starch addition), and biological (Pseudomonas aeruginosa) soil amendments on the degradation of Polyethylene (PE) and phytotoxic assessment for the growth of lettuce plant. The PE-degrading bacteria were isolated from the plastic-contaminated soil. The strain was identified as Pseudomonas aeruginosa (OP007126) and showed the highest degradation percentage for PE. PE was pre-treated with nitric acid as well as starch and incubated in the soil, whereas P. aeruginosa was also inoculated in PE-contaminated soils. Different combinations were also tested. FTIR analysis and weight reduction showed that though nitric acid was efficient in degradation, the combined application of starch and bacteria also showed effective degradation of PE. Phytotoxicity was assessed using morphological, physiological, and biochemical parameters of plant. Untreated PE significantly affected plants' physiology, resulting in a 45% reduction in leaf chlorophyll and a 40% reduction in relative water content. It also had adverse effects on the biochemical parameters of lettuce. Bacterial inoculation and starch treatment mitigated the harmful impact of stress and improved plants' growth as well as physiological and biochemical parameters; however, the nitric treatment proved phytotoxic. The observed results revealed that bacteria and starch could be effectively used for the degradation of pre-treated PE.
  13. Emmett SD, Sudoko CK, Tucci DL, Gong W, Saunders JE, Global HEAR (Hearing Loss Evaluation, Advocacy, and Research) Collaborative:, et al.
    Otolaryngol Head Neck Surg, 2019 10;161(4):672-682.
    PMID: 31210566 DOI: 10.1177/0194599819849917
    OBJECTIVE: To determine the cost-effectiveness of cochlear implantation (CI) with mainstream education and deaf education with sign language for treatment of children with profound sensorineural hearing loss in low- and lower-middle income countries in Asia.

    STUDY DESIGN: Cost-effectiveness analysis.

    SETTING: Bangladesh, Cambodia, India, Indonesia, Nepal, Pakistan, Philippines, and Sri Lanka participated in the study.

    SUBJECTS AND METHODS: Costs were obtained from experts in each country with known costs and published data, with estimation when necessary. A disability-adjusted life-years model was applied with 3% discounting and 10-year length of analysis. A sensitivity analysis was performed to evaluate the effect of device cost, professional salaries, annual number of implants, and probability of device failure. Cost-effectiveness was determined with the World Health Organization standard of cost-effectiveness ratio per gross domestic product (CER/GDP) per capita <3.

    RESULTS: Deaf education was cost-effective in all countries except Nepal (CER/GDP, 3.59). CI was cost-effective in all countries except Nepal (CER/GDP, 6.38) and Pakistan (CER/GDP, 3.14)-the latter of which reached borderline cost-effectiveness in the sensitivity analysis (minimum, maximum: 2.94, 3.39).

    CONCLUSION: Deaf education and CI are largely cost-effective in participating Asian countries. Variation in CI maintenance and education-related costs may contribute to the range of cost-effectiveness ratios observed in this study.

  14. Nogueira RG, Qureshi MM, Abdalkader M, Martins SO, Yamagami H, Qiu Z, et al.
    Neurology, 2021 Jun 08;96(23):e2824-e2838.
    PMID: 33766997 DOI: 10.1212/WNL.0000000000011885
    OBJECTIVE: To measure the global impact of COVID-19 pandemic on volumes of IV thrombolysis (IVT), IVT transfers, and stroke hospitalizations over 4 months at the height of the pandemic (March 1 to June 30, 2020) compared with 2 control 4-month periods.

    METHODS: We conducted a cross-sectional, observational, retrospective study across 6 continents, 70 countries, and 457 stroke centers. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.

    RESULTS: There were 91,373 stroke admissions in the 4 months immediately before compared to 80,894 admissions during the pandemic months, representing an 11.5% (95% confidence interval [CI] -11.7 to -11.3, p < 0.0001) decline. There were 13,334 IVT therapies in the 4 months preceding compared to 11,570 procedures during the pandemic, representing a 13.2% (95% CI -13.8 to -12.7, p < 0.0001) drop. Interfacility IVT transfers decreased from 1,337 to 1,178, or an 11.9% decrease (95% CI -13.7 to -10.3, p = 0.001). Recovery of stroke hospitalization volume (9.5%, 95% CI 9.2-9.8, p < 0.0001) was noted over the 2 later (May, June) vs the 2 earlier (March, April) pandemic months. There was a 1.48% stroke rate across 119,967 COVID-19 hospitalizations. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was noted in 3.3% (1,722/52,026) of all stroke admissions.

    CONCLUSIONS: The COVID-19 pandemic was associated with a global decline in the volume of stroke hospitalizations, IVT, and interfacility IVT transfers. Primary stroke centers and centers with higher COVID-19 inpatient volumes experienced steeper declines. Recovery of stroke hospitalization was noted in the later pandemic months.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links