Displaying all 16 publications

Abstract:
Sort:
  1. Ali, E. N., Jamaludin , M. Z.
    MyJurnal
    Moringa oleifera is a plant with various benefits to mankind from its root until leaves.
    From food to biofuel applications, all parts are useful for daily uses. In this research, the pod husk
    was examined to determine the possibility of producing ethanol. The pod husks were dried and used in
    two forms; one is grinded into powder, and the other is cut within 5 x 5 x 2 mm. About 10 grams of
    Moringa oleifera pod husk was put into a conical flask and added with distilled water up to 250 mL.
    The pre-treatment was made by adding an alkaline solution, NaOH, where the pH of the sample was
    adjusted to (4.5, 5.0, and 5.5) using H2SO4. The samples were autoclaved at a temperature of 120°C
    for 2 hours before the samples were cooled to room temperature (25+/-2oC). Baker’s yeast
    (Saccharomyces cerevisiae) was prepared with different concentrations (1g, 5g, and 10g) and added
    to the samples for fermentation process that took place in the incubator shaker at a temperature of
    36°C, for a period of 72 hours. The bioethanol concentration was measured using High Performance
    Liquid Chromatography (HPLC) with a refractive index detector and REZEX ROA-Organic Acid
    HPLC Column using 0.05 N H2SO4 as the mobile phase. The bioethanol produced from Moringa
    oleifera pod husk was 8.400 g/L using 1g/L yeast, and the fermentation took place at pH 4.5 for the
    sample size of 5 x 5 x 2 mm. The results showed that Moringa oleifera pod husk can be introduced as
    a new material for bioethanol production in Malaysia and other tropical countries where this tree is
    available
  2. Athani A, Ghazali NNN, Badruddin IA, Kamangar S, Anqi AE, Algahtani A
    Biomed Mater Eng, 2022;33(1):13-30.
    PMID: 34366314 DOI: 10.3233/BME-201171
    BACKGROUND: The blood flow in the human artery has been a subject of sincere interest due to its prime importance linked with human health. The hemodynamic study has revealed an essential aspect of blood flow that eventually proved to be paramount to make a correct decision to treat patients suffering from cardiac disease.

    OBJECTIVE: The current study aims to elucidate the two-way fluid-structure interaction (FSI) analysis of the blood flow and the effect of stenosis on hemodynamic parameters.

    METHODS: A patient-specific 3D model of the left coronary artery was constructed based on computed tomography (CT) images. The blood is assumed to be incompressible, homogenous, and behaves as Non-Newtonian, while the artery is considered as a nonlinear elastic, anisotropic, and incompressible material. Pulsatile flow conditions were applied at the boundary. Two-way coupled FSI modeling approach was used between fluid and solid domain. The hemodynamic parameters such as the pressure, velocity streamline, and wall shear stress were analyzed in the fluid domain and the solid domain deformation.

    RESULTS: The simulated results reveal that pressure drop exists in the vicinity of stenosis and a recirculation region after the stenosis. It was noted that stenosis leads to high wall stress. The results also demonstrate an overestimation of wall shear stress and velocity in the rigid wall CFD model compared to the FSI model.

  3. Hajjaj AA, Senok AC, Al-Mahmeed AE, Issa AA, Arzese AR, Botta GA
    Saudi Med J, 2006 Apr;27(4):487-91.
    PMID: 16598325
    To investigate the occurrence of human papillomavirus (HPV) infection and the associated risk factors in Bahrain's female population.
  4. Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS
    J Biol Res (Thessalon), 2014 Dec;21(1):6.
    PMID: 25984489 DOI: 10.1186/2241-5793-21-6
    Despite being more popular for biofuel, microalgae have gained a lot of attention as a source of biomolecules and biomass for feed purposes. Algae farming can be established using land as well as sea and strategies can be designed in order to gain the products of specific interest in the optimal way. A general overview of the contributions of Algae to meet the requirements of nutrients in animal/aquaculture feed is presented in this study. In addition to its applications in animal/aquaculture feed, algae can produce a number of biomolecules including astaxanthin, lutein, beta-carotene, chlorophyll, phycobiliprotein, Polyunsaturated Fatty Acids (PUFAs), beta-1,3-glucan, and pharmaceutical and nutraceutical compounds which have been reviewed with respect to their commercial importance and current status. The review is further extended to highlight the adequate utilization of value added products in the feeds for livestock, poultry and aquaculture (with emphasis in shrimp farming).
  5. Nasution MA, Yaakob Z, Ali E, Tasirin SM, Abdullah SR
    J Environ Qual, 2011 Jul-Aug;40(4):1332-9.
    PMID: 21712603 DOI: 10.2134/jeq2011.0002
    Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively.
  6. Erappa Rajj B, Nagaral M, Chintakindi S, Kumar R, Anqi AE, Rajhi AA, et al.
    ACS Omega, 2024 Apr 23;9(16):17878-17890.
    PMID: 38680352 DOI: 10.1021/acsomega.3c08822
    Aluminum metal cast composites (AMCCs) are frequently used in high-tech sectors such as automobiles, aerospace, biomedical, electronics, and others to fabricate precise and especially responsible parts. The mechanical and wear behavior of the metal matrix composites (MMCs) is anticipated to be influenced by the cooling agent's action and the cooling temperature. This research paper presents the findings of a series of tests to investigate the mechanical, wear, and fracture behavior of hybrid MMCs made of Al7075 reinforced by varying wt % of nano-sized Al2O3 and Gr and quenched with water and ice cubes. The heat-treated Al7075 alloy hybrid composites were evaluated for their hardness, tensile, and wear behavior, showcasing a significant process innovation. The heat treatment process greatly improved the hybrid composites' mechanical and wear performance. The samples quenched in ice attained the highest hardness of 119 VHN. There is a 45.37% improvement in the hardness of base alloy with the addition of 3% of Al2O3 and 1% of graphite particles. Further, the highest tensile and compression strengths were found in the ice-quenched 3% Al2O3 and 1% graphite hybrid composites with improvements of 34.2 and 48.83%, respectively, compared to the water-quenched base alloy. Under the samples quenched in ice, the mechanical and wear behavior improved. The tensile fractured surface showed voids, particle pullouts, and dimples. The worn-out surface of wear test samples of the created hybrid composite had micro pits, delamination layers, and microcracks.
  7. Hakim MA, Juraimi AS, Hanafi MM, Ali E, Ismail MR, Selamat A, et al.
    J Environ Biol, 2014 Mar;35(2):317-26.
    PMID: 24665756
    Selection of salt tolerant rice varieties has a huge impact on global food supply chain. Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219 and MR232 were tested in pot experiment under different salinity levels for their response in term of vegetative growth, physiological activities, development of yield components and grain yield. Rice varieties, BRRI dhan29 and IR20 were used as a salt-sensitive control and Pokkali was used as a salt-tolerant control. Three different salinity levels viz. 4, 8, and 12 dS m(-1) were used in a randomized complete block design with four replications under glass house conditions. Two Malaysia varieties, MR211 and MR232 performed better in terms of vegetative growth (plant height, leaf area plant(-1), number of tillers plant(-1), dry matter accumulation plant(-1)), photosynthetic rate, transpiration rate, yield components, grain yield and injury symptoms. While, MR33, MR52 and MR219 verities were able to withstand salinity stress over salt-sensitive control, BRRI dhan29 and IR20.
  8. Kamarudin AF, Hizaddin HF, El-Blidi L, Ali E, Hashim MA, Hadj-Kali MK
    Molecules, 2020 Nov 03;25(21).
    PMID: 33152997 DOI: 10.3390/molecules25215093
    Deep eutectic solvents (DESs) are green solvents developed as an alternative to conventional organic solvents and ionic liquids to extract nitrogen compounds from fuel oil. DESs based on p-toluenesulfonic acid (PTSA) are a new solvent class still under investigation for extraction/separation. This study investigated a new DES formed from a combination of tetrabutylphosphonium bromide (TBPBr) and PTSA at a 1:1 molar ratio. Two sets of ternary liquid-liquid equilibrium experiments were performed with different feed concentrations of nitrogen compounds ranging up to 20 mol% in gasoline and diesel model fuel oils. More than 99% of quinoline was extracted from heptane and pentadecane using the DES, leaving the minutest amount of the contaminant. Selectivity was up to 11,000 for the heptane system and up to 24,000 for the pentadecane system at room temperature. The raffinate phase's proton nuclear magnetic resonance (1H-NMR) spectroscopy and GC analysis identified a significantly small amount of quinoline. The selectivity toward quinoline was significantly high at low solute concentrations. The root-mean-square deviation between experimental data and the non-random two-liquid (NRTL) model was 1.12% and 0.31% with heptane and pentadecane, respectively. The results showed that the TBPBr/PTSADES is considerably efficient in eliminating nitrogen compounds from fuel oil.
  9. Ali E, Sultana S, Hamid SBA, Hossain M, Yehya WA, Kader A, et al.
    Crit Rev Food Sci Nutr, 2018 Jun 13;58(9):1495-1511.
    PMID: 28033035 DOI: 10.1080/10408398.2016.1264361
    Gelatin is a highly purified animal protein of pig, cow, and fish origins and is extensively used in food, pharmaceuticals, and personal care products. However, the acceptability of gelatin products greatly depends on the animal sources of the gelatin. Porcine and bovine gelatins have attractive features but limited acceptance because of religious prohibitions and potential zoonotic threats, whereas fish gelatin is welcomed in all religions and cultures. Thus, source authentication is a must for gelatin products but it is greatly challenging due to the breakdown of both protein and DNA biomarkers in processed gelatins. Therefore, several methods have been proposed for gelatin identification, but a comprehensive and systematic document that includes all of the techniques does not exist. This up-to-date review addresses this research gap and presents, in an accessible format, the major gelatin source authentication techniques, which are primarily nucleic acid and protein based. Instead of presenting these methods in paragraph form which needs much attention in reading, the major methods are schematically depicted, and their comparative features are tabulated. Future technologies are forecasted, and challenges are outlined. Overall, this review paper has the merit to serve as a reference guide for the production and application of gelatin in academia and industry and will act as a platform for the development of improved methods for gelatin authentication.
  10. Ali EZ, Yakob Y, Md Desa N, Ishak T, Zakaria Z, Ngu LK, et al.
    Malays J Pathol, 2017 08;39(2):99-106.
    PMID: 28866690 MyJurnal
    Fragile X syndrome (FXS) is a neurodevelopmental disorder commonly found worldwide, caused by the silencing of fragile X mental retardation 1 (FMR1) gene on the X-chromosome. Most of the patients lost FMR1 function due to an expansion of cytosine-guanine-guanine (CGG) repeat at the 5' untranslated region (5'UTR) of the gene. The purpose of this study is to identify the prevalence of FXS and characterize the FMR1 gene CGG repeats distribution among children with developmental disability in Malaysia. Genomic DNA of 2201 samples from different ethnicities (Malays, Chinese, Indian and others) of both genders were PCR-amplified from peripheral blood leukocytes based on specific primers at 5'UTR of FMR1 gene. Full mutations and mosaics were successfully identified by triple methylation specific PCR (ms-PCR) and subsequently verified with FragilEase kit. The findings revealed for the first time the prevalence of FXS full mutation in children with developmental disability in Malaysia was 3.5%, a slightly higher figure as compared to other countries. Molecular investigation also identified 0.2% and 0.4% probands have permutation and intermediate alleles, respectively. The CGG repeats length observation showed 95% of patients had normal alleles within 11 to 44 CGG repeats; with 29 repeats found most common among Malays and Indians while 28 repeats were most common among Chinese. In conclusion, this is the first report of prevalence and characterisation of CGG repeats that reflects genetic variability among Malaysian ethnic grouping.
  11. Nawar A, Khoja AH, Akbar N, Ansari AA, Qayyum M, Ali E
    BMC Res Notes, 2017 Dec 02;10(1):666.
    PMID: 29197425 DOI: 10.1186/s13104-017-2995-9
    OBJECTIVE: A major factor in practical application of photobioreactors (PBR) is the adhesion of algal cells onto their inner walls. Optimized algal growth requires an adequate sunlight for the photosynthesis and cell growth. Limitation in light exposure adversely affects the algal biomass yield. The removal of the biofilm from PBR is a challenging and expansive task. This study was designed to develop an inexpensive technique to prevent adhesion of algal biofilm on tubular PBR to ensure high efficiency of light utilization. Rubber balls with surface projections were introduced into the reactor, to remove the adherent biofilm by physical abrasion technique.

    RESULTS: The floatation of spike balls created a turbulent flow, thereby inhibiting further biofilm formation. The parameters such as, specific growth rate and doubling time of the algae before introducing the balls were 0.451 day-1 and 1.5 days respectively. Visible biofilm impeding light transmission was formed by 15-20 days. The removal of the biofilm commenced immediately after the introduction of the spike balls with visibly reduced deposits in 3 days. This was also validated by enhance cell count (6.95 × 106 cells mL-1) in the medium. The employment of spike balls in PBR is an environmental friendly and economical method for the removal of biofilm.

  12. Asing, Ali E, Hamid SB, Hossain M, Ahamad MN, Hossain SM, et al.
    PMID: 27643977
    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected species widely used in exotic foods and traditional medicines. Currently available polymerase chain reaction (PCR) assays to identify MBT lack automation and involve long targets which break down in processed or denatured tissue. This SYBR Green duplex real-time PCR assay has addressed this research gap for the first time through the combination of 120- and 141-bp targets from MBT and eukaryotes for the quantitative detection of MBT DNA in food chain and herbal medicinal preparations. This authentication ensures better security through automation, internal control and short targets that were stable under the processing treatments of foods and medicines. A melting curve clearly demonstrated two peaks at 74.63 ± 0.22 and 78.40 ± 0.31°C for the MBT and eukaryotic products, respectively, under pure, admixed and commercial food matrices. Analysis of 125 reference samples reflected a target recovery of 93.25-153.00%, PCR efficiency of 99-100% and limit of detection of 0.001% under various matrices. The quantification limits were 0.00001, 0.00170 ± 0.00012, 0.00228 ± 0.00029, 0.00198 ± 0.00036 and 0.00191 ± 0.00043 ng DNA for the pure meat, binary mixtures, meatball, burger and frankfurter products, respectively. The assay was used to screen 100 commercial samples of traditional Chinese herbal jelly powder from eight different brands; 22% of them were found to be MBT-positive (5.37 ± 0.50-7.00 ± 0.34% w/w), which was reflected through the Ct values (26.37 ± 0.32-28.90 ± 0.42) and melting curves (74.63-78.65 ± 0.22°C) of the amplified MBT target (120 bp), confirming the speculation that MBT materials are widely used in Chinese herbal desserts, exotic dishes consumed with the hope of prolonging life and youth.
  13. Karim FT, Ghafoor K, Ferdosh S, Al-Juhaimi F, Ali E, Yunus KB, et al.
    J Food Drug Anal, 2017 Jul;25(3):654-666.
    PMID: 28911651 DOI: 10.1016/j.jfda.2016.11.017
    In order to improve the encapsulation process, a newly supercritical antisolvent process was developed to encapsulate fish oil using hydroxypropyl methyl cellulose as a polymer. Three factors, namely, temperature, pressure, and feed emulsion rate were optimized using response surface methodology. The suitability of the model for predicting the optimum response value was evaluated at the conditions of temperature at 60°C, pressure at 150 bar, and feed rate at 1.36 mL/min. At the optimum conditions, particle size of 58.35 μm was obtained. The surface morphology of the micronized fish oil was also evaluated using field emission scanning electron microscopy where it showed that particles formed spherical structures with no internal voids. Moreover, in vitro release of oil showed that there are significant differences of release percentage of oil between the formulations and the results proved that there was a significant decrease in the in vitro release of oil from the powder when the polymer concentration was high.
  14. Ahmad M, Al-Zubi MA, Kubińska-Jabcoń E, Majdi A, Al-Mansob RA, Sabri MMS, et al.
    Sci Rep, 2023 Aug 21;13(1):13593.
    PMID: 37604957 DOI: 10.1038/s41598-023-40903-1
    The California bearing ratio (CBR) is one of the basic subgrade strength characterization properties in road pavement design for evaluating the bearing capacity of pavement subgrade materials. In this research, a new model based on the Gaussian process regression (GPR) computing technique was trained and developed to predict CBR value of hydrated lime-activated rice husk ash (HARHA) treated soil. An experimental database containing 121 data points have been used. The dataset contains input parameters namely HARHA-a hybrid geometrical binder, liquid limit, plastic limit, plastic index, optimum moisture content, activity and maximum dry density while the output parameter for the model is CBR. The performance of the GPR model is assessed using statistical parameters, including the coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), Relative Root Mean Square Error (RRMSE), and performance indicator (ρ). The obtained results through GPR model yield higher accuracy as compare to recently establish artificial neural network (ANN) and gene expression programming (GEP) models in the literature. The analysis of the R2 together with MAE, RMSE, RRMSE, and ρ values for the CBR demonstrates that the GPR achieved a better prediction performance in training phase with (R2 = 0.9999, MAE = 0.0920, RMSE = 0.13907, RRMSE = 0.0078 and ρ = 0.00391) succeeded by the ANN model with (R2 = 0.9998, MAE = 0.0962, RMSE = 4.98, RRMSE = 0.20, and ρ = 0.100) and GEP model with (R2 = 0.9972, MAE = 0.5, RMSE = 4.94, RRMSE = 0.202, and ρ = 0.101). Furthermore, the sensitivity analysis result shows that HARHA was the key parameter affecting the CBR.
  15. Ahmad M, Al-Zubi MA, Kubińska-Jabcoń E, Majdi A, Al-Mansob RA, Sabri MMS, et al.
    Sci Rep, 2023 Sep 01;13(1):14376.
    PMID: 37658150 DOI: 10.1038/s41598-023-41737-7
  16. Banerjee R, Pal P, Hilmi I, Ghoshal UC, Desai DC, Rahman MM, et al.
    PMID: 35178742 DOI: 10.1111/jgh.15801
    Background and aims Inflammatory bowel disease (IBD) is emerging in the newly industrialized countries of South Asia, South East Asia and the Middle East, yet epidemiological data are scarce.

    METHODS: We performed a cross-sectional study of IBD demographics, disease phenotype and treatment across 38 centers in 15 countries of South Asia, South-East Asia and Middle East. Intergroup comparisons included gross national income (GNI) per capita.

    RESULTS: Among 10,400 patients, ulcerative colitis (UC) was twice as common as Crohn's disease (CD), with a male predominance (UC 6678, CD 3495, IBD-Unclassified 227, 58% male). Peak age of onset was in the third decade, with a low proportion of elderly onset IBD (5% age >60). Familial IBD was rare (5%). The extent of UC was predominantly distal (proctitis/left sided 67%), with most being treated with mesalamine (94%), steroids (54%), or immunomodulators (31%). Ileocolic CD (43%) was commonest, with low rates of perianal disease (8%) and only 6% smokers. Diagnostic delay for CD was common (median 12 months; IQR 5-30). Treatment of CD included mesalamine, steroids and immunomodulator (61%, 51% and 56% respectively), but a fifth received empirical anti-tubercular therapy. Treatment with biologics was uncommon (4% UC,13% CD) which increased in countries with higher GNI per capita. Surgery rates were 0.1 (UC) and 2 (CD)/100 patient/years.

    CONCLUSIONS: The IBD-ENC cohort provides insight into IBD in South-East Asia and the Middle East, but is not yet population-based. UC is twice as common as CD, familial disease uncommon and rates of surgery are low. Biologic use correlates with per capita GNI.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links