METHODS: Google Scholar, ScienceDirect, Scopus, Cochrane Library, and ProQuest databases were searched up to December 2021 for studies that report the effect of unrefined sugar on inflammation according to inflammatory cytokines, chemokine, and adhesion molecules as outcome measures. Results: Thirty-six studies were evaluated. Across all research, five studies (two in vitro and three animal studies) reported the effect of unrefined sugar on levels of cytokines, including IL-6, TNF-α, IL-10, IL-1β, and IFN-γ. Additionally, the quality of the studies was assessed for risk of bias.
CONCLUSIONS: it is possible to affirm that unrefined sugarcane products, including jaggery, may have a protective effect on inflammation via regulating some of the inflammatory pathways and a favorable impact on cytokines secretion according to the results of in vitro and animal model studies. However, since the findings are still insufficient, more scientific research, especially well-designed human trials, is highly recommended to conclude the outcomes confidently. Human data may encourage industries and the public to replace purified sugar with unrefined sugarcane in sugar-based food and for further health-care policy decisions.
OBJECTIVE: This study undertakes a scoping review of research on the impacts of dietary sugar on cardiometabolic related health outcomes.
METHODS: Ovid Medline, Scopus and Web of Science Core collection databases were used to identify papers published from January 1, 2010 onwards. The included studies had to be cross-sectional or cohort studies, peered review, published in English and in adults, aged 18 years old and above. Articles had to determine the impacts of sugar intake on cardiometabolic related health outcomes. Study quality was measured using the Quality Assessment Tool for Observational Cohort and Cross-sectional Studies. In addition, a narrative synthesis of extracted information was conducted.
RESULTS: Thirty-one articles were included in this review. All studies had a large sample size, and the exposure measure was clearly defined, valid and applied consistently across all study participants. Exposure was measured using validated questionnaires. All data were statistically analysed and adjusted for critical potential confounding variables. Results showed that dietary sugar intake was significantly associated with metabolic syndrome, blood pressure, blood glucose, blood lipids, and body weight.
CONCLUSION: Dietary sugar intake significantly increased cardiometabolic risks through mechanisms dependent and independent of weight gain. It is essential to create public awareness on the topics of cardiometabolic risk management and dietary sugars intake.