Five species of white rot fungi were screened for their capability to synthesize Ag nanoparticles (AgNPs). Three modes of AgNP bioreduction were developed. Pycnoporus sanguineus is found as a potential candidate for the synthesis of AgNPs with a yield at 98.9%. The synthesized AgNPs were characterized using UV-vis spectroscopy, DLS, FTIR, TEM, and SEM. Results showed that AgNP absorption band was located at a peak of 420 nm. Both the SEM and TEM confirmed that the formation of AgNPs were mainly spherical with average diameters of 52.8-103.3 nm. The signals of silver atoms' presence in the mycelium were observed by SEM-EDS spectrum.
Some species of Ganoderma, such as G. lucidum, are well-known as traditional Chinese medicine (TCM), and their pharmacological value was scientifically proven in modern days. However, G. boninense is recognized as an oil palm pathogen, and its biological activity is scarcely reported. Hence, this study aimed to investigate the antibacterial properties of G. boninense fruiting bodies, which formed by condensed mycelial, produced numerous and complex profiles of natural compounds. Extract was cleaned up with normal-phase SPE and its metabolites were analyzed using liquid chromatography-mass spectrometry (LCMS). From the disc diffusion and broth microdilution assays, strong susceptibility was observed in methicillin-resistant Staphylococcus aureus (MRSA) in elute fraction with zone inhibition of 41.08 ± 0.04 mm and MIC value of 0.078 mg mL-1. A total of 23 peaks were detected using MS, which were putatively identified based on their mass-to-charge ratio (m/z), and eight compounds, which include aristolochic acid, aminoimidazole ribotide, lysine sulfonamide 11v, carbocyclic puromycin, fenbendazole, acetylcaranine, tigecycline, and tamoxifen, were reported in earlier literature for their antimicrobial activity. Morphological observation via scanning electron microscope (SEM), cell membrane permeability, and integrity assessment suggest G. boninense extract induces irreversible damage to the cell membrane of MRSA, thus causing cellular lysis and death.
Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed.
The present study investigates the cytotoxicity of hexagonal MgO nanoparticles synthesized via Amaranthus tricolor leaf extract and spherical MgO nanoparticles synthesized via Amaranthus blitum and Andrographis paniculata leaf extracts. In vitro cytotoxicity analysis showed that the hexagonal MgO nanoparticles synthesized from A. tricolor extract demonstrated the least toxicity to both diabetic and non-diabetic cells at 600 μl/ml dosage. The viability of the diabetic cells (3T3-L1) after incubation with varying dosages of MgO nanoparticles was observed to be 55.3%. The viability of normal VERO cells was 86.6% and this stabilized to about 75% even after exposure to MgO nanoparticles dosage of up to 1000 μl/ml. Colorimetric glucose assay revealed that the A. tricolor extract synthesized MgO nanoparticles resulted in ~ 28% insulin resistance reversal. A reduction in the expression of GLUT4 protein at 54 KDa after MgO nanopaSrticles incubation with diabetic cells was observed via western blot analysis to confirm insulin reversal ability. Fluorescence microscopic analysis with propidium iodide and acridine orange dyes showed the release of reactive oxygen species as a possible mechanism of the cytotoxic effect of MgO nanoparticles. It was inferred that the synergistic effect of the phytochemicals and MgO nanoparticles played a significant role in delivering enhanced insulin resistance reversal capability in adipose cells.
The use of nanometal oxides in nanoagronomy has garnered considerable attention due to their excellent antifungal and plant growth promotion properties. Hybrid nanometal oxides, which combine the strengths of individual nanomaterials, have emerged as a promising class of materials. In this study, nanomagnesium oxide (n-MgO) and hybrid magnetic nanomagnesium oxide (m/n-MgO) were successfully synthesized via the ultrasound-mediated sol-gel method. Characterization results, including TGA, XRD, VSM, and FTIR, confirmed the successful synthesis of m/n-MgO. Both n-MgO and m/n-MgO underwent antifungal assays and plant growth promotion ability studies, benchmarked against the conventional fungicide-copper oxychloride. This study bridges a significant gap by simultaneously reporting the antifungal properties of both n-MgO and m/n-MgO and their impact on plant growth. The disc diffusion assay suggested that the antifungal activity of n-MgO and m/n-MgO against F. oxysporum was inversely related to the particle size. Notably, n-MgO exhibited superior antifungal performance (lower minimum inhibitory concentration (MIC)) and sustained efficacy compared with m/n-MgO, owing to distinct antifungal mechanisms. Nanorod-shaped MgO, with a smaller size (8.24 ± 5.61 nm) and higher aspect ratio, allowed them to penetrate the fungal cell wall and cause intercellular damage. In contrast, cubical m/n-MgO, with a larger size (20.95 ± 9.99 nm) and lower aspect ratio, accumulate on the fungal cell wall surface, disrupting the wall integrity, albeit less effectively against F. oxysporum. Moreover, in plant growth promotion studies, m/n-MgO-treated samples exhibited a 15.7% stronger promotion effect compared to n-MgO at their respective MICs. In addition, both n-MgO and m/n-MgO outperformed copper oxychloride in terms of antifungal and plant growth promoting activities. Thus, m/n-MgO presents a promising alternative to conventional copper-based fungicides, offering dual functionality as a fungicide and plant growth promoter, while the study also delves into the antifungal mechanisms at the intracellular level, enhancing its novelty.
Two 4-year-old monozygotic Chinese, female twins developed concordant childhood acute lymphoblastic leukemia (ALL) within an interval of about 2 weeks. Based on morphology and cytochemistry findings of the bone marrow blast cells, a diagnosis of ALL, L1 was made. Immunophenotyping showed the blast cells of both twins expressed similar antigens, i.e. HLA-DR, CD10, CD13, CD19, CD22 and CD34. Identical blood group, same HLA (human leucocyte antigen) genotype, sex and similar appearance suggest that the twins are monozygotic. Since the bone marrow leukemic cells of both twins were identical in morphology and expressed the same antigens with almost similar percentages of positivity, it is likely that the blast cells were derived from the same single clone. Based on the single clone hypothesis, the leukemogenic event must have arisen in utero in one twin and the cells from the abnormal clone then spread to the other twin via shared placental anastomoses.
Insulin resistance is one of the major factors that leads to type 2 diabetes. Although insulin therapies have been shown to overcome insulin resistance, overweight and hypoglycemia are still observed in most cases. The disadvantages of insulin therapies have driven the interest in developing novel curative agents with enhanced insulin resistance reversibility. Magnesium deficiency has also been recognized as a common problem which leads to insulin resistance in both type 1 and 2 diabetes. Oxide nanoparticles demonstrate highly tunable physicochemical properties that can be exploited by engineers to develop unique oxide nanoparticles for tailored applications. Magnesium supplements for diabetic cells have been reported to increase the insulin resistance reversibility. Hence, it is hypothesized that magnesium oxide (MgO) nanoparticles could be molecularly engineered to offer enhanced therapeutic efficacy in reversing insulin resistance. In the present work, morphologically different MgO nanoparticles were synthesized and evaluated for biophysical characteristics, biocompatibility, cytotoxicity, and insulin resistance reversibility. MTT assay revealed that hexagonally shaped MgO nanoparticles are less toxic to 3T3-L1 adipose cells (diabetic) compared with spherically and rod-shaped MgO nanoparticles. MTT assays using VERO cells (normal, non-diabetic) showed that 400 μg/ml of hexagonal MgO nanoparticles were less toxic to both diabetic and non-diabetic cells. DNS glucose assay and western blot showed that hexagonally shaped MgO nanoparticles had reversed 29.5% of insulin resistance whilst fluorescence microscopy studies indicated that the insulin resistance reversal is due to the activation of intracellular enzymes. The probable mechanism for MgO nanoparticles to induce cytotoxic effect and insulin resistance reversal is discussed.
Chikungunya virus is a reemerging arbovirus transmitted mainly by Aedes mosquitoes. As there are no specific treatments available, Chikungunya virus infection is a significant public health problem. This study investigated 120 extracts from selected medicinal plants for anti-Chikungunya virus activity. The plant materials were subjected to sequential solvent extraction to obtain six different extracts for each plant. The cytotoxicity and antiviral activity of each extract were examined using African monkey kidney epithelial (Vero) cells. The ethanol, methanol and chloroform extracts of Tradescantia spathacea (Commelinaceae) leaves showed the strongest cytopathic effect inhibition on Vero cells, resulting in cell viabilities of 92.6% ± 1.0% (512 μg/ml), 91.5% ± 1.7% (512 μg/ml) and 88.8% ± 2.4% (80 μg/ml) respectively. However, quantitative RT-PCR analysis revealed that the chloroform extract of Rhapis excelsa (Arecaceae) leaves resulted in the highest percentage of reduction of viral load (98.1%), followed by the ethyl acetate extract of Vernonia amygdalina (Compositae) leaves (95.5%). The corresponding 50% effective concentrations (EC50) and selectivity indices for these two extracts were 29.9 ± 0.9 and 32.4 ± 1.3 μg/ml, and 5.4 and 5.1 respectively. Rhapis excelsa and Vernonia amygdalina could be sources of anti-Chikungunya virus agents. [Int Microbiol 19(3):175-182 (2016)].
Bimaxillary protrusion is a unique dentofacial deformity trait that can exist in an individual as an isolated problem or in combination with other skeletal and dental-related issues. Orthodontist and oral and maxillofacial surgeons are often the main primary team involved in the management of bimaxillary protrusion. Clinical dilemma often exists as cases can either be treated orthodontically or may require a combination of orthodontic and skeletal segmental orthognathic surgery. This article aims to help clinicians improve their approach to management of bimaxillary protrusion by creating a classification based on the severity that can guide treatment selection.
In recent times, magnesium oxide (MgO) nanoparticles are proven to be an excellent antibacterial agent which inhibits the growth of bacteria by generating reactive oxygen species (ROS). Release of ROS by nanoparticles will damage the cell membrane of bacteria and leads to the leakage of bacterial internal components and cell death. However, chemically synthesized MgO nanoparticles may possess toxic functional groups which may inhibit healthy human cells along with bacterial cells. Thus, the aim of the present study is to synthesize MgO nanoparticles using leaf extracts of Amaranthus tricolor and photo-irradiation of visible light as a catalyst, without addition of any chemicals. Optimization was performed using Box-Behnken design (BBD) to obtain the optimum condition required to synthesize smallest nanoparticles. The parameters such as time of reaction, the concentration of precursor, and light intensity have been identified to affect the size of biosynthesized nanoparticles and was optimized. The experiment performed with optimized conditions such as 0.001 M concentration of magnesium acetate as precursor, 5 cm distance of light (intensity), and 15 min of reaction time (light exposure) has led to the formation of 74.6 nm sized MgO nanoparticles. The antibacterial activities of MgO nanoparticles formed via photo-irradiation and conventional biosynthesis approach were investigated and compared. The lethal dosage of E. coli for photo-irradiated and conventional biosynthesis MgO nanoparticles was 0.6 ml and 0.4 ml, respectively. Likewise, the lethal dosage of S. aureus for both biosynthesis approaches was found to be 0.4 ml. The results revealed that the antibacterial activity of MgO nanoparticles from both biosynthesis approaches was similar. Thus, photo-irradiated MgO nanoparticles were beneficial over heat-mediated conventional method due to the reduced synthesis duration.
Nanomaterials (NMs) have gained prominence in technological advancements due to their tunable physical, chemical and biological properties with enhanced performance over their bulk counterparts. NMs are categorized depending on their size, composition, shape, and origin. The ability to predict the unique properties of NMs increases the value of each classification. Due to increased growth of production of NMs and their industrial applications, issues relating to toxicity are inevitable. The aim of this review is to compare synthetic (engineered) and naturally occurring nanoparticles (NPs) and nanostructured materials (NSMs) to identify their nanoscale properties and to define the specific knowledge gaps related to the risk assessment of NPs and NSMs in the environment. The review presents an overview of the history and classifications of NMs and gives an overview of the various sources of NPs and NSMs, from natural to synthetic, and their toxic effects towards mammalian cells and tissue. Additionally, the types of toxic reactions associated with NPs and NSMs and the regulations implemented by different countries to reduce the associated risks are also discussed.
The main purpose of this article is to develop a new and reliable saliva-based clinical diagnostic method for the early detection of oral squamous cell carcinoma (OSCC). This study used an immunoproteomic approach which allowed the detection of immunogenic host proteins in patients' samples using pooled human antibodies. In an attempt to investigate potential biomarkers of OSCC, two-dimensional electrophoresis (2-DE) followed by immunoblotting of saliva from patients and controls were compared. The protein spots of interest were analyzed using 2-DE image analyzer and subsequently subjected to MALDI-TOF/TOF and then matched against NCBI database. The result showed that four protein clusters, namely Human Pancreatic Alpha-amylase (HPA), Human Salivary Amylase (sAA), keratin-10 (K-10), and Ga Module Complexed with Human Serum Albumin (GA-HSA), had exhibited immunoreactivity in western blot. The results are suggestive of the potential use of the differentially expressed saliva protein as tumor biomarkers for the detection of OSCC. However, further studies are recommended to validate this finding.
Developments in nanotechnology field, specifically, metal oxide nanoparticles have attracted the attention of researchers due to their unique sensing, electronic, drug delivery, catalysis, optoelectronics, cosmetics, and space applications. Physicochemical methods are used to fabricate nanosized metal oxides; however, drawbacks such as high cost and toxic chemical involvement prevail. Recent researches focus on synthesizing metal oxide nanoparticles through green chemistry which helps in avoiding the involvement of toxic chemicals in the synthesis process. Bacteria, fungi, and plants are the biological sources that are utilized for the green nanoparticle synthesis. Due to drawbacks such as tedious maintenance and the time needed for the nanoparticle formation, plant extracts are widely used in nanoparticle production. In addition, plants are available all over the world and phytosynthesized nanoparticles show comparatively less toxicity towards mammalian cells. Secondary metabolites including flavonoids, terpenoids, and saponins are present in plant extracts, and these are highly responsible for nanoparticle formation and reduction of toxicity. Hence, this article gives an overview of recent developments in the phytosynthesis of metal oxide nanoparticles and their toxic analysis in various cells and animal models. Also, their possible mechanism in normal and cancer cells, pharmaceutical applications, and their efficiency in disease treatment are also discussed.
Although global demand for palm oil has been increasing, most activities in the oil palm plantations still rely heavily on manual labour, which includes fresh fruit bunch (FFB) harvesting and loose fruit (LF) collection. As a result, harvesters and/or collectors face ergonomic risks resulting in musculoskeletal disorder (MSD) due to awkward, extreme and repetitive posture during their daily work routines. Traditionally, indirect approaches were adopted to assess these risks using a survey or manual visual observations. In this study, a direct measurement approach was performed using Inertial Measurement Units, and surface Electromyography sensors. The instruments were attached to different body parts of the plantation workers to quantify their muscle activities and assess the ergonomics risks during FFB harvesting and LF collection. The results revealed that the workers generally displayed poor and discomfort posture in both activities. Biceps, multifidus and longissimus muscles were found to be heavily used during FFB harvesting. Longissimus, iliocostalis, and multifidus muscles were the most used muscles during LF collection. These findings can be beneficial in the design of various assistive tools which could improve workers' posture, reduce the risk of injury and MSD, and potentially improve their overall productivity and quality of life.
Diabetes mellitus has been a threat to humans for many years. Amongst the different diabetes types, type 2 diabetes mellitus is the most common, and this is due to drastic changes in human lifestyle such as lack of exercise, stressful life and so on. There are a large number of conventional treatment methods available for type 2 diabetes mellitus. However, most of these methods are curative and are only applicable when the patient is highly symptomatic. Effective treatment strategies should be geared towards interfering with cellular and bio molecular mechanisms associated with the development and sustenance of the disease. In recent years, research into the medical potential of nanoparticles has been a major endeavor within the pharmaceutical industries. Nanoparticles display unique and tuneable biophysical characteristics which are determined by their shape and size. Nanoparticles have been used to manifest the properties of drugs, and as carriers for drug and vaccine delivery. Notwithstanding, there are further opportunities for nanoparticles to augment the treatment of a wide range of life threatening diseases that are yet to be explored. This review article seeks to highlight the application of potential nano-formulations in the treatment of type 2 diabetes mellitus. In addition, the activity of nanomedicine supplements in reversing insulin resistance is also discussed.
Dementia is a major burden on global health for which there are no effective treatments. The use of noninvasive visual stimulation to ameliorate cognitive deficits is a novel concept that may be applicable for treating dementia. In this study, we investigated the effects of transcorneal electrical stimulation (TES) on memory enhancement using two mouse models, in aged mice and in the 5XFAD model of Alzheimer's disease. After 3 weeks of TES treatment, mice were subjected to Y-maze and Morris water maze tests to assess hippocampal-dependent learning and memory. Immunostaining of the hippocampus of 5XFAD mice was also performed to examine the effects of TES on amyloid plaque pathology. The results showed that TES improved the performance of both aged and 5XFAD mice in memory tests. TES also reduced hippocampal plaque deposition in male, but not female, 5XFAD mice. Moreover, TES significantly reversed the downregulated level of postsynaptic protein 95 in the hippocampus of male 5XFAD mice, suggesting the effects of TES involve a postsynaptic mechanism. Overall, these findings support further investigation of TES as a potential treatment for cognitive dysfunction and mechanistic studies of TES effects in other dementia models.
This study was conducted to evaluate the chemical composition and biological activities of the leaf extracts of Syzygium myrtifolium Walp. (Myrtaceae). The results indicate that the leaf extracts of S. myrtifolium contain various classes of phytochemicals (alkaloids, anthraquinones, flavonoids, phenolics, saponins, tannins and triterpenoids) and possess antioxidant, antibacterial, antifungal and antiviral activities. Ethyl acetate, ethanol, methanol, and water extracts exhibited significantly higher (p < 0.05) oxygen radical absorbance capacity and ferric-reducing antioxidant power than the hexane and chloroform extracts. However, all extracts exhibited stronger inhibitory activity against four tested species of yeasts (minimal inhibitory concentration: 0.02-0.31 mg mL-1) than against six tested species of bacteria (minimal inhibitory concentration: 0.16-1.25 mg mL-1). The ethanolic extract offered the highest protection of Vero cells (viability > 70 %) from the cytopathic effect caused by the Chikungunya virus while the ethyl acetate extract showed significant replication inhibitory activity against the virus (p < 0.001) using the replicon-enhanced green fluorescent protein reporter system.
Numerous viral infections are common among humans, and some can lead to death. Even though conventional antiviral agents are beneficial in eliminating viral infections, they may lead to side effects or physiological toxicity. Silver nanoparticles and nanocomposites have been demonstrated to possess inhibitory properties against several pathogenic microbes, including archaea, bacteria, fungi, algae, and viruses. Its pronounced antimicrobial activity against various microbe-mediated diseases potentiates its use in combating viral infections. Notably, the appropriated selection of the synthesis method to fabricate silver nanoparticles is a major factor for consideration as it directly impacts antiviral efficacy, level of toxicity, scalability, and environmental sustainability. Thus, this article presents and discusses various synthesis approaches to produce silver nanoparticles and nanocomposites, providing technological insights into selecting approaches to generate antiviral silver-based nanoparticles. The antiviral mechanism of various formulations of silver nanoparticles and the evaluation of its propensity to combat specific viral infections as a potential antiviral agent are also discussed.
This study aims to establish an efficient pretreatment method that facilitates the conversion of sugars from macroalgae wastes, Eucheuma cottonii residues (ECRs) during hydrolysis and subsequently enhances l-lactic acid (L-LA) production. Hence, ultrasonic-assisted molten salt hydrates (UMSHs) pretreatment was proposed to enhance the accessibility of ECRs to hydrolyze into glucose through dilute acid hydrolysis (DAH). The obtained hydrolysates were employed as the substrate in producing L-LA by separate hydrolysis and fermentation (SHF). The maximum glucose yield (97.75 %) was achieved using UMSHs pretreated ECRs with 40 wt% ZnCl2 at 80 °C for 2 h and followed with DAH. The optimum glucose to L-LA yield obtained for SHF was 90.08 % using 5 % (w/w) inoculum cell densities of B. coagulans ATCC 7050 with yeast extract (YE). A comparable performance (89.65 %) was obtained using a nutrient combination (lipid-extracted Chlorella vulgaris residues (CVRs), vitamin B3, and vitamin B5) as a partial alternative for YE.
This study proposes and investigates the feasibility of the passive assistive device to assist agricultural harvesting task and reduce the Musculoskeletal Disorder (MSD) risk of harvesters using computational musculoskeletal modelling and simulations. Several passive assistive devices comprised of elastic exotendon, which acts in parallel with different back muscles (rectus abdominis, longissimus, and iliocostalis), were designed and modelled. These passive assistive devices were integrated individually into the musculoskeletal model to provide passive support for the harvesting task. The muscle activation, muscle force, and joint moment were computed with biomechanical simulations for unassisted and assisted motions. The simulation results demonstrated that passive assistive devices reduced muscle activation, muscle force, and joint moment, particularly when the devices were attached to the iliocostalis and rectus abdominis. It was also discovered that assisting the longissimus muscle can alleviate the workload by distributing a portion of it to the rectus abdominis. The findings in this study support the feasibility of adopting passive assistive devices to reduce the MSD risk of the harvesters during agricultural harvesting. These findings can provide valuable insights to the engineers and designers of physical assistive devices on which muscle(s) to assist during agricultural harvesting.