METHODS: The paracetamol was encapsulated in beads, which were prepared mainly from alginate and chitosan through electrospray technique. The paracetamol beads were sprinkled on the instant jelly prepared from glycine, ι-carrageenan and calcium lactate gluconate. The paracetamol instant jelly characteristics, in terms of physical appearance, texture, rheology, in vitro drug release and palatability were assessed on a human volunteer.
RESULTS: The paracetamol instant jelly was easily reconstituted in 20 mL of water within 2 min to form jelly with acceptable consistency and texture. The jelly must be ingested within 30 min after reconstitution to avoid the bitter taste. The palatability assessment carried out on 12 human subjects established the similar palatability and texture of the paracetamol instant jelly dosage comparable to the commercial paracetamol suspension and was found to be even better in overcoming the aftertaste of paracetamol.
CONCLUSION: Such findings indicate that paracetamol instant jelly will compensate for the use of sweetening and flavoring agents as well as develop pediatric dosage forms with limited undesired excipients.
OBJECTIVE: This study aims to evaluate the role of maltodextrin, glucose, and mannitol as carriers for in vitro and in vivo performance of Aceclofenac (ACE) proniosomes.
METHODS: Three formulations of proniosomes were prepared by the slurry method using the 100 mg ACE, 500 mg span 60, 250 mg cholesterol with 1300mg of different carriers, i.e., glucose (FN1), maltodextrin (FN2), and mannitol (FN3). In vitro drug release studies were conducted by the USP paddle method, while in vivo studies were performed in albino rats. Pure ACE was used as a reference in all the tests. Lastly, the results were analyzed using the High-Pressure Liquid Chromatography (HPLC) method, and data were evaluated using further kinetic and statistical tools.
RESULTS: No significant differences (p > 0.05) in entrapment efficiency (%EE) of FN1, FN2, and FN3 (82 ± 0.5%, 84 ± 0.66%, and 84 ± 0.34% respectively) were observed and formulations were used for further in vitro and in vivo evaluations. During in vitro drug release studies, the dissolved drug was found to be 42% for the pure drug, while 70%, 17%, and 30% for FN1, FN2, and FN3, respectively, at 15 min. After 24 hrs, the pure drug showed a maximum of 50% release while 94%, 80%, and 79% drug release were observed after 24 hr for FN1, FN2, and FN3, respectively. The in vivo study conducted on albino rats showed a higher Cmax and AUC of FN1 and FN2 in comparison with the pure ACE. Moreover, the relative oral bioavailability of proniosomes with maltodextrin and glucose as carriers compared to the pure drug was 183% and 112%, respectively. Mannitol- based formulation exhibited low bioavailability (53.7%) that may be attributed to its osmotic behavior.
CONCLUSION: These findings confirm that a carrier plays a significant role in determining in vitro and in vivo performance of proniosomes and careful selection of carrier is an important aspect of proniosomes optimization.
Methods: Melt mixing SD method was employed using a ratio of API: binary carrier (1:3.5 w/w) (SDPE). Another SD was prepared using only PEG (SDP) as a carrier for comparative study. The developed formulation was evaluated using optical microscopy, scanning electron microscopy (SEM), determination of moisture content, differential scanning calorimetry (DSC), in vitro dissolution test, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and flow properties.
Results: SEM and DSC indicated the conversion of crystalline ibuprofen to fine partly amorphous solid dispersion, which was responsible for the increase in dissolution rate of SD than a physical mixture. The release characteristics within 1 h from the higher to the lower value were the SDPE> SDP> physical mixture. Flow property evaluation using the angle of repose showed no difference between SD and PM. However, by Carr index and Hausner ratio, the flow properties of SDPE was excellent.
Conclusion: The SD formulation with the PEG 4000-EC carrier can be effective to enhance in vitro dissolution of ibuprofen immediate release dosage form.
METHODS: Pharmaceutical emulsion holds a significant place as a primary choice of oral drug delivery system for lipophilic drugs used in pediatric and geriatric patients. Pharmacokinetic studies on nanoemulsion mediated drugs delivery approach indicates practical feasibility in regards to their clinical translation and commercialization.
RESULTS: This review article is to provide an updated understanding on pharmacokinetic and pharmacodynamic features of nanoemulsion delivered via oral, intravenous, topical and nasal route.
CONCLUSION: The article is of huge interest to formulation scientists working on range of lipophilic drug molecules intended to be administered through oral, intravenous, topical and nasal routes for vivid medical benefits.