Displaying publications 1 - 20 of 25 in total

  1. Rahbari, R., Hamdi, M., Farhudi, O., Yahya, R., Asmalina, M., Marzuki, Z.
    Self-propagating high-temperature synthesis (SHS) of powder compacts is a novel processing technique being developed as a route for the production of engineering ceramics and other advanced materials. The process, which is also referred to as combustion synthesis, provides energy- and cost-saving advantages over the more conventional processing routes for these materials. In the case of titanium or titanium alloy materials, prior researches employed powder metallurgy technology for preparing metal matrix composites, MMCs and laminated structures through the use of fine powders of an inert phase or phases (TiC, TiN, TiB and TiB2B ) dispersed in Ti or Ti alloy powders. The present research relates to manufacture of titanium-ceramic composites that are synthesized by combustion synthesis (SHS) and retains a multilayered composite microstructure comprising one or more titanium-based layers and one ceramic titanium carbide layers.
  2. Rizwan M, Hamdi M, Basirun WJ
    J Biomed Mater Res A, 2017 Nov;105(11):3197-3223.
    PMID: 28686004 DOI: 10.1002/jbm.a.36156
    Bioglass® 45S5 (BG) has an outstanding ability to bond with bones and soft tissues, but its application as a load-bearing scaffold material is restricted due to its inherent brittleness. BG-based composites combine the amazing biological and bioactive characteristics of BG with structural and functional features of other materials. This article reviews the composites of Bioglass® in combination with metals, ceramics and polymers for a wide range of potential applications from bone scaffolds to nerve regeneration. Bioglass® also possesses angiogenic and antibacterial properties in addition to its very high bioactivity; hence, composite materials developed for these applications are also discussed. BG-based composites with polymer matrices have been developed for a wide variety of soft tissue engineering. This review focuses on the research that suggests the suitability of BG-based composites as a scaffold material for hard and soft tissues engineering. Composite production techniques have a direct influence on the bioactivity and mechanical behavior of scaffolds. A detailed discussion of the bioactivity, in vitro and in vivo biocompatibility and biodegradation is presented as a function of materials and its processing techniques. Finally, an outlook for future research is also proposed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3197-3223, 2017.
  3. Hassan MA, Mahmoodian R, Hamdi M
    Sci Rep, 2014;4:3724.
    PMID: 24430621 DOI: 10.1038/srep03724
    A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration.
  4. Hassan MA, Hamdi M, Noma A
    J Mech Behav Biomed Mater, 2012 Jan;5(1):99-109.
    PMID: 22100084 DOI: 10.1016/j.jmbbm.2011.08.011
    The mechanical behavior of the heart muscle tissues is the central problem in finite element simulation of the heart contraction, excitation propagation and development of an artificial heart. Nonlinear elastic and viscoelastic passive material properties of the left ventricular papillary muscle of a guinea pig heart were determined based on in-vitro precise uniaxial and relaxation tests. The nonlinear elastic behavior was modeled by a hypoelastic model and different hyperelastic strain energy functions such as Ogden and Mooney-Rivlin. Nonlinear least square fitting and constrained optimization were conducted under MATLAB and MSC.MARC in order to obtain the model material parameters. The experimental tensile data was used to get the nonlinear elastic mechanical behavior of the heart muscle. However, stress relaxation data was used to determine the relaxation behavior as well as viscosity of the tissues. Viscohyperelastic behavior was constructed by a multiplicative decomposition of a standard Ogden strain energy function, W, for instantaneous deformation and a relaxation function, R(t), in a Prony series form. The study reveals that hypoelastic and hyperelastic (Ogden) models fit the tissue mechanical behaviors well and can be safely used for heart mechanics simulation. Since the characteristic relaxation time (900 s) of heart muscle tissues is very large compared with the actual time of heart beating cycle (800 ms), the effect of viscosity can be reasonably ignored. The amount and type of experimental data has a strong effect on the Ogden parameters. The in vitro passive mechanical properties are good initial values to start running the biosimulation codes for heart mechanics. However, an optimization algorithm is developed, based on clinical intact heart measurements, to estimate and re-correct the material parameters in order to get the in vivo mechanical properties, needed for very accurate bio-simulation and for the development of new materials for the artificial heart.
  5. Mardziah CM, Sopyan I, Hamdi M, Ramesh S
    Med J Malaysia, 2008 Jul;63 Suppl A:79-80.
    PMID: 19024993
    Improvement of the mechanical properties of hydroxyapatite (HA) can be achieved by the incorporation of metal. In addition, incorporation of strontium ion into HA crystal structures has been proved effective to enhance biochemical properties of bone implant. In this research, strontium-doped HA powder was developed via a sol-gel method to produce extraordinarily fine strontium-doped HA (Sr-doped HA) powder. XRD measurement had shown that the powder contained hydroxyapatite phase only for all doping concentration except for 2%, showing that Sr atoms have suppressed the appearance of beta-TCP as the secondary phase. Morphological evaluation by FESEM measurement shows that the particles of the Sr-doped HA agglomerates are globular in shape with an average size of 1-2 microm in diameter while the primary particles have a diameter of 30-150 nm in average.
  6. Mahmoodian R, Hamdi M, Hassan MA, Akbari A
    PLoS One, 2015;10(6):e0130836.
    PMID: 26111217 DOI: 10.1371/journal.pone.0130836
    Titanium carbide-graphite (TiC/C) composite was successfully synthesized from Ti and C starting elemental powders using self-propagating high-temperature synthesis technique in an ultra-high plasma inert medium in a single stage. The TiC was exposed to a high-temperature inert medium to allow recrystallization. The product was then characterized using field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Rietveld refinement, nanoindentation, and micro-hardness to determine the product's properties. The recorded micro-hardness of the product was 3660 HV, which is a 14% enhancement and makes is comparable to TiC materials.
  7. Mahmoodian R, Yahya R, Dabbagh A, Hamdi M, Hassan MA
    PLoS One, 2015;10(12):e0144632.
    PMID: 26641651 DOI: 10.1371/journal.pone.0144632
    A novel method is proposed to study the behavior and phase formation of a Si+C compacted pellet under centrifugal acceleration in a hybrid reaction. Si+C as elemental mixture in the form of a pellet is embedded in a centrifugal tube. The pellet assembly and tube are exposed to the sudden thermal energy of a thermite reaction resulted in a hybrid reaction. The hybrid reaction of thermite and Si+C produced unique phases. X-ray diffraction pattern (XRD) as well as microstructural and elemental analyses are then investigated. XRD pattern showed formation of materials with possible electronic and magnetic properties. The cooling rate and the molten particle viscosity mathematical model of the process are meant to assist in understanding the physical and chemical phenomena took place during and after reaction. The results analysis revealed that up to 85% of materials converted into secondary products as ceramics-matrix composite.
  8. Al-Maqtari AA, Razak AA, Hamdi M
    Dent Mater J, 2014;33(4):458-65.
    PMID: 25087658
    This study aimed at investigating and establishing stress distributions in graded multilayered zirconia/alumina ceramic cores and at veneer-core-cement-dentin interfaces, using finite element analysis (FEA), to facilitate the structural design of ceramic cores through computer modeling. An intact maxillary premolar was digitized using CT scanning. An imaging software, Mimics, was used to reconstruct 3D models based on computed tomography (CT) data saved in DICOM format. Eight different 3D models were created for FEA, where each 3D model was meshed and its bottom boundaries constrained. A static load was applied in the oblique direction. The materials were assumed to be isotropic and homogeneous. Highest von Mises stress values were found in areas directly below the load application point, and stress gradually decreased in occlusal loading direction from the external surface toward the dentin. Stress levels occurring at veneer-ceramic core-cement-dentin interfaces were shown to be lower in multilayered ceramic cores than in single-layer models.
  9. Hassaballah AI, Hassan MA, Mardi AN, Hamdi M
    PLoS One, 2013;8(12):e82703.
    PMID: 24367544 DOI: 10.1371/journal.pone.0082703
    The determination of the myocardium's tissue properties is important in constructing functional finite element (FE) models of the human heart. To obtain accurate properties especially for functional modeling of a heart, tissue properties have to be determined in vivo. At present, there are only few in vivo methods that can be applied to characterize the internal myocardium tissue mechanics. This work introduced and evaluated an FE inverse method to determine the myocardial tissue compressibility. Specifically, it combined an inverse FE method with the experimentally-measured left ventricular (LV) internal cavity pressure and volume versus time curves. Results indicated that the FE inverse method showed good correlation between LV repolarization and the variations in the myocardium tissue bulk modulus K (K = 1/compressibility), as well as provided an ability to describe in vivo human myocardium material behavior. The myocardium bulk modulus can be effectively used as a diagnostic tool of the heart ejection fraction. The model developed is proved to be robust and efficient. It offers a new perspective and means to the study of living-myocardium tissue properties, as it shows the variation of the bulk modulus throughout the cardiac cycle.
  10. Abu Kasim NH, Madfa AA, Hamdi M, Rahbari GR
    Dent Mater J, 2011;30(6):869-80.
    PMID: 22123011 DOI: 10.4012/dmj.2010-161
    This study aimed to compare the biomechanical behaviour of functionally graded structured posts (FGSPs) and homogenous-type posts in simulated models of a maxillary central incisor. Two models of FGSPs consisting of a multilayer xTi-yHA composite design, where zirconia and alumina was added as the first layer for models A and B respectively were compared to homogenous zirconia post (model C) and a titanium post (model D). The amount of Ti and HA in the FGSP models was varied in gradations. 3D-FEA was performed on all models and stress distributions were investigated along the dental post. In addition, interface stresses between the posts and their surrounding structures were investigated under vertical, oblique, and horizontal loadings. Strain distribution along the post-dentine interface was also investigated. The results showed that FGSPs models, A and B demonstrated better stress distribution than models C and D, indicating that dental posts with multilayered structure dissipate localized and interfacial stress and strain more efficiently than homogenous-type posts.
  11. Tan CY, Ramesh S, Aw KL, Yeo WH, Hamdi M, Sopyan I
    Med J Malaysia, 2008 Jul;63 Suppl A:87-8.
    PMID: 19024997
    The sintering behaviour of synthesized HA powder that was calcined at various temperatures ranging from 700 degrees C to 1000 degrees C was investigated in terms of phase stability, bulk density, Young's modulus and Vickers hardness. The calcination treatment resulted in higher crystallinity of the starting HA powder. Decomposition of HA phase to form secondary phases was not observed in all the calcined powders. The results also indicated that powder calcination (up to 900 degrees C) prior to sintering has negligible effect on the sinterability of the HA compacts. However, powder calcined at 1000 degrees C was found to be detrimental to the properties of sintered hydroxyapatite bioceramics.
  12. Baradaran S, Basirun WJ, Zalnezhad E, Hamdi M, Sarhan AA, Alias Y
    J Mech Behav Biomed Mater, 2013 Apr;20:272-82.
    PMID: 23453827 DOI: 10.1016/j.jmbbm.2013.01.020
    In this study, titanium thin films were deposited on alumina substrates by radio frequency (RF) magnetron sputtering. The mechanical properties of the Ti coatings were evaluated in terms of adhesion strength at various RF powers, temperatures, and substrate bias voltages. The coating conditions of 400W of RF power, 250°C, and a 75V substrate bias voltage produced the strongest coating adhesion, as obtained by the Taguchi optimisation method. TiO2 nanotube arrays were grown as a second layer on the Ti substrates using electrochemical anodisation at a constant potential of 20V and anodisation times of 15min, 45min, and 75min in a NH4F electrolyte solution (75 ethylene glycol: 25 water). The anodised titanium was annealed at 450°C and 650°C in a N2 gas furnace to obtain different phases of titania, anatase and rutile, respectively. The mechanical properties of the anodised layer were investigated by nanoindentation. The results indicate that Young's modulus and hardness increased with annealing temperature to 650°C.
  13. Annuar S, Mahmoodian R, Hamdi M, Tu KN
    Sci Technol Adv Mater, 2017;18(1):693-703.
    PMID: 29057024 DOI: 10.1080/14686996.2017.1364975
    The high performance and downsizing technology of three-dimensional integrated circuits (3D-ICs) for mobile consumer electronic products have gained much attention in the microelectronics industry. This has been driven by the utilization of chip stacking by through-Si-via and solder microbumps. Pb-free solder microbumps are intended to replace conventional Pb-containing solder joints due to the rising awareness of environmental preservation. The use of low-volume solder microbumps has led to crucial constraints that cause several reliability issues, including excessive intermetallic compounds (IMCs) formation and solder microbump embrittlement due to IMCs growth. This article reviews technologies related to 3D-ICs, IMCs formation mechanisms and reliability issues concerning IMCs with Pb-free solder microbumps. Finally, future outlook on the potential growth of research in this area is discussed.
  14. Rizwan M, Alias R, Zaidi UZ, Mahmoodian R, Hamdi M
    J Biomed Mater Res A, 2018 02;106(2):590-605.
    PMID: 28975693 DOI: 10.1002/jbm.a.36259
    Plasma electrolytic oxidation (PEO) is an advance technique to develop porous oxidation layer on light metals, primarily to enhance corrosion and wear resistance. The oxidation layer can also offer a wide variety of mechanical, biomedical, tribological, and antibacterial properties through the incorporation of several ions and particles. Due to the increasing need of antimicrobial surfaces for biomedical implants, antibacterial PEO coatings have been developed through the incorporation of antibacterial agents. Metallic nanoparticles that have been employed most widely as antibacterial agents are reported to demonstrate serious health and environmental threats. To overcome the current limitations of these coatings, there is a significant need to develop antibacterial surfaces that are not harmful for patient's health and environment. Attention of the readers has been directed to utilize bioactive glasses as antibacterial agents for PEO coatings. Bioactive glasses are well known for their excellent bioactivity, biocompatibility, and antibacterial character. PEO coatings incorporated with bioactive glasses can provide environment-friendly antimicrobial surfaces with exceptional bioactivity, biocompatibility, and osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 590-605, 2018.
  15. Dabbagh A, Mahmoodian R, Abdullah BJ, Abdullah H, Hamdi M, Abu Kasim NH
    Int J Hyperthermia, 2015;31(8):920-9.
    PMID: 26670340 DOI: 10.3109/02656736.2015.1094147
    The aim of this paper was to synthesise core-shell nanostructures comprised of mesoporous silica core and a low melting-point polyethylene glycol (PEG) nanoshell with a sharp gel-liquid phase transition for rapid drug release at hyperthermia temperature range.
  16. Dabbagh A, Abdullah BJ, Abu Kasim NH, Abdullah H, Hamdi M
    Int J Hyperthermia, 2015 Jun;31(4):375-85.
    PMID: 25716769 DOI: 10.3109/02656736.2015.1006268
    The aim of this paper was to introduce a new mechanism of thermal sensitivity in nanocarriers that results in a relatively low drug release at physiological temperature and rapid release of the encapsulated drug at hyperthermia and thermal ablation temperature range (40-60 °C).
  17. Baradaran S, Moghaddam E, Nasiri-Tabrizi B, Basirun WJ, Mehrali M, Sookhakian M, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:656-668.
    PMID: 25686995 DOI: 10.1016/j.msec.2015.01.050
    The effect of the addition of an ionic dopant to calcium phosphates for biomedical applications requires specific research due to the essential roles played in such processes. In the present study, the mechanical and biological properties of Ni-doped hydroxyapatite (HA) and Ni-doped HA mixed with graphene nanoplatelets (GNPs) were evaluated. Ni (3wt.% and 6wt.%)-doped HA was synthesized using a continuous precipitation method and calcined at 900°C for 1h. The GNP (0.5-2wt.%)-reinforced 6% Ni-doped HA (Ni6) composite was prepared using rotary ball milling for 15h. The sintering process was performed using hot isostatic pressing at processing conditions of 1150°C and 160MPa with a 1-h holding time. The results indicated that the phase compositions and structural features of the products were noticeably affected by the Ni and GNPs. The mechanical properties of Ni6 and 1.5Ni6 were increased by 55% and 75% in hardness, 59% and 163% in fracture toughness and 120% and 85% in elastic modulus compared with monolithic HA, respectively. The in-vitro biological behavior was investigated using h-FOB osteoblast cells in 1, 3 and 5days of culture. Based on the osteoblast results, the cytotoxicity of the products was indeed affected by the Ni doping. In addition, the effect of GNPs on the growth and proliferation of osteoblast cells was investigated in Ni6 composites containing different ratios of GNPs, where 1.5wt.% was the optimum value.
  18. Ramesh S, Yaghoubi A, Lee KY, Chin KM, Purbolaksono J, Hamdi M, et al.
    J Mech Behav Biomed Mater, 2013 Sep;25:63-9.
    PMID: 23726923 DOI: 10.1016/j.jmbbm.2013.05.008
    Forsterite (Mg2SiO4) because of its exceptionally high fracture toughness which is close to that of cortical bones has been nominated as a possible successor to calcium phosphate bioceramics. Recent in vitro studies also suggest that forsterite possesses good bioactivity and promotes osteoblast proliferation as well as adhesion. However studies on preparation and sinterability of nanocrystalline forsterite remain scarce. In this work, we use a solid-state reaction with magnesium oxide (MgO) and talc (Mg3Si4(OH)2) as the starting precursors to synthesize forsterite. A systematic investigation was carried out to elucidate the effect of preparatory procedures including heat treatment, mixing methods and sintering temperature on development of microstructures as well as the mechanical properties of the sintered forsterite body.
  19. Ramesh S, Tan CY, Aw KL, Yeo WH, Hamdi M, Sopyan I, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:89-90.
    PMID: 19024998
    The sintering behaviour of a commercial HA and synthesized HA was investigated over the temperature range of 700 degrees C to 1400 degrees C in terms of phase stability, bulk density, Young's modulus and Vickers hardness. In the present research, a wet chemical precipitation reaction was successfully employed to synthesize a submicron, highly crystalline, high purity and single phase stoichiometric HA powder that is highly sinteractive particularly at low temperature regimes below 1100 degrees C. It has been revealed that the sinterability of the synthesized HA was significantly greater than that of the commercial HA. The temperature for the onset of sintering and the temperature required to achieve densities above 98% of theoretical value were approximately 150 degrees C lower for the synthesized HA than the equivalent commercial HA. Nevertheless, decomposition of HA phase upon sintering was not observed in the present work for both powders.
  20. Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T
    Regen Med, 2015;10(5):579-90.
    PMID: 26237702 DOI: 10.2217/rme.15.27
    To compare the effect of bovine bone derived porous hydroxyapatite (BDHA) scaffold on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hMSCs) compared with commercial hydroxyapatite (CHA) scaffold.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links