MATERIALS & METHODS: This was a cross-sectional study involving 101 subjects recruited from the National Institute of Forensic Medicine (IPFN) Hospital Kuala Lumpur (HKL) over a period of 15 months, from December 2012 until April 2014. PMCT CS of the coronary arteries was calculated using Agatston-Janowitz score. Histological presence of calcification was observed and the degree of stenosis was calculated using an image analysis technique.
RESULTS: PMCT CS increased with increasing severity of stenosis (p<0.001). PMCT CS showed a positive correlation with the presence of calcification (r=-0.82, p<0.001).
CONCLUSION: Calcium score is strongly associated with coronary artery calcification and the degree of luminal stenosis in post mortem subjects. Thus, PMCT may be useful as a non-invasive tool in diagnosing CAD in the event that an autopsy is not possible.
METHODS: The PURE study is a prospective, population-based cohort study of individuals aged 35-70 years who have been enrolled from 21 countries across five continents. The key outcomes were the incidence of fatal and non-fatal cardiovascular diseases, cancers, injuries, respiratory diseases, and hospital admissions, and we calculated the age-standardised and sex-standardised incidence of these events per 1000 person-years.
FINDINGS: This analysis assesses the incidence of events in 162 534 participants who were enrolled in the first two phases of the PURE core study, between Jan 6, 2005, and Dec 4, 2016, and who were assessed for a median of 9·5 years (IQR 8·5-10·9). During follow-up, 11 307 (7·0%) participants died, 9329 (5·7%) participants had cardiovascular disease, 5151 (3·2%) participants had a cancer, 4386 (2·7%) participants had injuries requiring hospital admission, 2911 (1·8%) participants had pneumonia, and 1830 (1·1%) participants had chronic obstructive pulmonary disease (COPD). Cardiovascular disease occurred more often in LICs (7·1 cases per 1000 person-years) and in MICs (6·8 cases per 1000 person-years) than in HICs (4·3 cases per 1000 person-years). However, incident cancers, injuries, COPD, and pneumonia were most common in HICs and least common in LICs. Overall mortality rates in LICs (13·3 deaths per 1000 person-years) were double those in MICs (6·9 deaths per 1000 person-years) and four times higher than in HICs (3·4 deaths per 1000 person-years). This pattern of the highest mortality in LICs and the lowest in HICs was observed for all causes of death except cancer, where mortality was similar across country income levels. Cardiovascular disease was the most common cause of deaths overall (40%) but accounted for only 23% of deaths in HICs (vs 41% in MICs and 43% in LICs), despite more cardiovascular disease risk factors (as judged by INTERHEART risk scores) in HICs and the fewest such risk factors in LICs. The ratio of deaths from cardiovascular disease to those from cancer was 0·4 in HICs, 1·3 in MICs, and 3·0 in LICs, and four upper-MICs (Argentina, Chile, Turkey, and Poland) showed ratios similar to the HICs. Rates of first hospital admission and cardiovascular disease medication use were lowest in LICs and highest in HICs.
INTERPRETATION: Among adults aged 35-70 years, cardiovascular disease is the major cause of mortality globally. However, in HICs and some upper-MICs, deaths from cancer are now more common than those from cardiovascular disease, indicating a transition in the predominant causes of deaths in middle-age. As cardiovascular disease decreases in many countries, mortality from cancer will probably become the leading cause of death. The high mortality in poorer countries is not related to risk factors, but it might be related to poorer access to health care.
FUNDING: Full funding sources are listed at the end of the paper (see Acknowledgments).
DESIGN: Population-based prospective observational study.
SETTING: Urban and rural communities in 20 high income, middle income and low income.
PARTICIPANTS: 119 894 community-dwelling middle-aged adults.
MAIN OUTCOME MEASURES: Associations of social isolation with mortality, cardiovascular death, non-cardiovascular death and incident diseases.
RESULTS: Social isolation was more common in middle-income and high-income countries compared with low-income countries, in urban areas than rural areas, in older individuals and among women, those with less education and the unemployed. It was more frequent among smokers and those with a poorer diet. Social isolation was associated with greater risk of mortality (HR of 1.26, 95% CI: 1.17 to 1.36), incident stroke (HR: 1.23, 95% CI: 1.07 to 1.40), cardiovascular disease (HR: 1.15, 95% CI: 1.05 to 1.25) and pneumonia (HR: 1.22, 95% CI: 1.09 to 1.37), but not cancer. The associations between social isolation and mortality were observed in populations in high-income, middle-income and low-income countries (HR (95% CI): 1.69 (1.32 to 2.17), 1.27 (1.15 to 1.40) and 1.47 (1.25 to 1.73), respectively, interaction p=0.02). The HR associated with social isolation was greater in men than women and in younger than older individuals. Mediation analyses for the association between social isolation and mortality showed that unhealthy behaviours and comorbidities may account for about one-fifth of the association.
CONCLUSION: Social isolation is associated with increased risk of mortality in countries at different economic levels. The increasing share of older people in populations in many countries argues for targeted strategies to mitigate its adverse effects.
METHODS: In the Prospective Urban Rural Epidemiological study (PURE), individuals aged 35-70 years from urban and rural communities in 27 countries were considered for inclusion. We recorded information on participants' sociodemographic characteristics, risk factors, medication use, cardiac investigations, and interventions. 168 490 participants who enrolled in the first two of the three phases of PURE were followed up prospectively for incident cardiovascular disease and death.
FINDINGS: From Jan 6, 2005 to May 6, 2019, 202 072 individuals were recruited to the study. The mean age of women included in the study was 50·8 (SD 9·9) years compared with 51·7 (10) years for men. Participants were followed up for a median of 9·5 (IQR 8·5-10·9) years. Women had a lower cardiovascular disease risk factor burden using two different risk scores (INTERHEART and Framingham). Primary prevention strategies, such as adoption of several healthy lifestyle behaviours and use of proven medicines, were more frequent in women than men. Incidence of cardiovascular disease (4·1 [95% CI 4·0-4·2] for women vs 6·4 [6·2-6·6] for men per 1000 person-years; adjusted hazard ratio [aHR] 0·75 [95% CI 0·72-0·79]) and all-cause death (4·5 [95% CI 4·4-4·7] for women vs 7·4 [7·2-7·7] for men per 1000 person-years; aHR 0·62 [95% CI 0·60-0·65]) were also lower in women. By contrast, secondary prevention treatments, cardiac investigations, and coronary revascularisation were less frequent in women than men with coronary artery disease in all groups of countries. Despite this, women had lower risk of recurrent cardiovascular disease events (20·0 [95% CI 18·2-21·7] versus 27·7 [95% CI 25·6-29·8] per 1000 person-years in men, adjusted hazard ratio 0·73 [95% CI 0·64-0·83]) and women had lower 30-day mortality after a new cardiovascular disease event compared with men (22% in women versus 28% in men; p<0·0001). Differences between women and men in treatments and outcomes were more marked in LMICs with little differences in HICs in those with or without previous cardiovascular disease.
INTERPRETATION: Treatments for cardiovascular disease are more common in women than men in primary prevention, but the reverse is seen in secondary prevention. However, consistently better outcomes are observed in women than in men, both in those with and without previous cardiovascular disease. Improving cardiovascular disease prevention and treatment, especially in LMICs, should be vigorously pursued in both women and men.
FUNDING: Full funding sources are listed at the end of the paper (see Acknowledgments).
Objective: To assess whether sleep timing and napping behavior are associated with increased obesity, independent of nocturnal sleep length.
Design, Setting, and Participants: This large, multinational, population-based cross-sectional study used data of participants from 60 study centers in 26 countries with varying income levels as part of the Prospective Urban Rural Epidemiology study. Participants were aged 35 to 70 years and were mainly recruited during 2005 and 2009. Data analysis occurred from October 2020 through March 2021.
Exposures: Sleep timing (ie, bedtime and wake-up time), nocturnal sleep duration, daytime napping.
Main Outcomes and Measures: The primary outcomes were prevalence of obesity, specified as general obesity, defined as body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) of 30 or greater, and abdominal obesity, defined as waist circumference greater than 102 cm for men or greater than 88 cm for women. Multilevel logistic regression models with random effects for study centers were performed to calculate adjusted odds ratios (AORs) and 95% CIs.
Results: Overall, 136 652 participants (81 652 [59.8%] women; mean [SD] age, 51.0 [9.8] years) were included in analysis. A total of 27 195 participants (19.9%) had general obesity, and 37 024 participants (27.1%) had abdominal obesity. The mean (SD) nocturnal sleep duration was 7.8 (1.4) hours, and the median (interquartile range) midsleep time was 2:15 am (1:30 am-3:00 am). A total of 19 660 participants (14.4%) had late bedtime behavior (ie, midnight or later). Compared with bedtime between 8 pm and 10 pm, late bedtime was associated with general obesity (AOR, 1.20; 95% CI, 1.12-1.29) and abdominal obesity (AOR, 1.20; 95% CI, 1.12-1.28), particularly among participants who went to bed between 2 am and 6 am (general obesity: AOR, 1.35; 95% CI, 1.18-1.54; abdominal obesity: AOR, 1.38; 95% CI, 1.21-1.58). Short nocturnal sleep of less than 6 hours was associated with general obesity (eg, <5 hours: AOR, 1.27; 95% CI, 1.13-1.43), but longer napping was associated with higher abdominal obesity prevalence (eg, ≥1 hours: AOR, 1.39; 95% CI, 1.31-1.47). Neither going to bed during the day (ie, before 8pm) nor wake-up time was associated with obesity.
Conclusions and Relevance: This cross-sectional study found that late nocturnal bedtime and short nocturnal sleep were associated with increased risk of obesity prevalence, while longer daytime napping did not reduce the risk but was associated with higher risk of abdominal obesity. Strategic weight control programs should also encourage earlier bedtime and avoid short nocturnal sleep to mitigate obesity epidemic.