Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Teh SS, Mah SH
    J Oleo Sci, 2018;67(11):1381-1387.
    PMID: 30404958 DOI: 10.5650/jos.ess18067
    The study was aimed at evaluating the effects of vegetable oils on emulsion stability. Palm olein (POo), olive oil (OO), safflower oil (SAF), grape seed oil (GSO), soybean oil (SBO) and sunflower oil (SFO) with different degree of saturation levels were chosen as major ingredient of oil phases. All the emulsions were stored at 4℃, 27℃ and 40℃ for 35 days and subjected to all the stability tests, including temperature variation, centrifuge test, cycle test, pH and slip melting point. The results indicated that POo exhibited the highest stability, followed by SAF, OO, GSO, SFO and SBO. In addition, the results implied that the degree of saturation levels of vegetable oils does give significant effect on emulsion stability based on the centrifuge testing for an approximate 30% usage level of oil. The POo-based emulsion exhibited good emulsion stability throughout the experimental period indicated that POo could be a good carrier oil for various applications in cosmetic industry.
  2. Vanessa VV, Mah SH
    Mini Rev Med Chem, 2021;21(17):2507-2529.
    PMID: 33583373 DOI: 10.2174/1389557521666210212152514
    Alzheimer's disease is a neurodegenerative disorder that results in progressive and irreversible central nervous system impairment, which has become one of the severe issues recently. The most successful approach of Alzheimer's treatment is the administration of cholinesterase inhibitors to prevent the hydrolysis of acetylcholine and subsequently improve cholinergic postsynaptic transmission. This review highlights a class of heterocycles, namely xanthone, and its remarkable acetylcholinesterase inhibitory activities. Naturally occurring xanthones, including oxygenated, prenylated, pyrano, and glycosylated xanthones, exhibited promising inhibition effects towards acetylcholinesterase. Interestingly, synthetic xanthone derivatives with complex substituents such as alkyl, pyrrolidine, piperidine, and morpholine have shown greater acetylcholinesterase inhibition activities. The structure-activity relationship of xanthones revealed that the type and position of the substituent(s) attached to the xanthone moiety influenced acetylcholinesterase inhibition activities where hydrophobic moiety will lead to an improved activity by contributing to the π-π interactions, as well as the hydroxy substituent(s) by forming hydrogen-bond interactions. Thus, further studies, including quantitative structure-activity relationship, in vivo and clinical validation studies are crucial for the development of xanthones into novel anti-Alzheimer's disease drugs.
  3. Lock TJ, Mah SH, Lai ZW
    PMID: 37971579 DOI: 10.1007/s12010-023-04769-3
    Brewer's spent grain (BSG) is a major by-product in the beer-brewing process which contributes to 85% of the entire generated by-product in the brewing process. BSG is rich in proteins, and most of the malt proteins (74-78%) remain insoluble in BSG after the mashing process. Solid-state fermentation (SSF) is a promising bioprocess that enables microorganisms to survive in environments with minimal water and has shown to enhance the nutritional composition of BSG. In this review, the potential application of protein, amino acids (proline, threonine, and serine), phenolic contents, and soluble sugars (glucose, fructose, xylose, arabinose, and cellobiose) extracted from BSG by various microorganisms using SSF is explored. Incorporation of BSG into animal feed, human diets, and as a substrate for microorganisms are the prospects that could be implemented in the industrial scale. This review also discussed various advances to improve the fermentation yield such as symbiotic fermentation, the addition of nitrogen supplements, and an optimal mixture of the agro-industrial waste substrate. Future perspectives on SSF are also addressed to provide important ideas for immediate and future studies. However, challenges include optimizing SSF conditions and design of bioreactors, and operational costs must be addressed in the future to overcome current obstacles. Overall, this mini review highlights the potential benefits of BSG utilization and SSF in a sustainable way.
  4. Mah SH, Sundrasegaran S, Lau HLN
    J Oleo Sci, 2024;73(4):489-502.
    PMID: 38556283 DOI: 10.5650/jos.ess23197
    Skincare industries are growing rapidly around the globe but most products are formulated using synthetic chemicals and organic solvent extracted plant extracts, thus may be hazardous to the users and incur higher cost for purification that eventually leads to phytonutrient degradation. Therefore, this study aimed to formulate a stable natural formulation with antioxidant and antimicrobial activities by using supercritical carbon dioxide (SC-CO 2 ) extracted palm-pressed fiber oil (PPFO) as an active ingredient with virgin coconut oil (VCO) as a formulation base. PPFO was extracted from fresh palm-pressed fiber (PPF) while VCO was from dried grated coconut copra using SC-CO 2 before being subjected to the analyses of physicochemical properties, phytonutrient content and biological activities including antioxidant and antimicrobial. The nanoemulgel formulations were then developed and examined for their stability through accelerated stability study for 3 months by measuring their pH, particle size, polydispersity index and zeta potential. The results showed that PPFO contained a high amount of phytonutrients, especially total carotenoid (1497 ppm) and total tocopherol and tocotrienol (2269 ppm) contents. The newly developed nanoemulgels maintained their particles in nano size and showed good stability with high negative zeta potentials. Sample nanoemulgel formulated with 3% PPFO diluted in VCO as effective concentration showed significantly stronger antioxidant activity than the control which was formulated from 3% tocopheryl acetate diluted in mineral oil, towards DPPH and ABTS radicals, with IC 50 values of 67.41 and 44.28 µL/mL, respectively. For the antibacterial activities, the sample nanoemulgel was found to inhibit Gram positive bacteria S. aureus and S. epidermidis growth but not the Gram negative strain E. coli. Overall, this study revealed the potential of SF-extracted PPFO as an active ingredient in the antioxidant topical formulations thus future study on in vitro skin cell models is highly recommended for validation.
  5. Mah SH, Ee GC, Teh SS, Sukari MA
    Nat Prod Res, 2015;29(1):98-101.
    PMID: 25229947 DOI: 10.1080/14786419.2014.959949
    Extensive chromatographic isolation and purification of the extracts of the stem bark of Calophyllum inophyllum and Calophyllum soulattri have resulted in 11 xanthones. C. inophyllum gave inophinnin (1), inophinone (2), pyranojacareubin (5), rheediaxanthone A (6), macluraxanthone (7) and 4-hydroxyxanthone (8), while C. soulattri afforded soulattrin (3), phylattrin (4), caloxanthone C (9), brasixanthone B (10) and trapezifolixanthone (11). The structures of these compounds were determined on the basis of spectroscopic analyses such as 1D and 2D NMR, GC-MS, IR and UV. Cytotoxicity screening (MTT assay) carried out in vitro on all the xanthones using five human cancer cell lines indicated good activities for some of these xanthones. The structure-activity relationship study revealed that the inhibitory activities exhibited by these xanthone derivatives to be closely related to the existence and nature of the pyrano and the prenyl substituent groups on their skeleton.
  6. Gunter NV, Teh SS, Lim YM, Mah SH
    Front Pharmacol, 2020;11:594202.
    PMID: 33424605 DOI: 10.3389/fphar.2020.594202
    The pathogenesis of skin inflammatory diseases such as atopic dermatitis, acne, psoriasis, and skin cancers generally involve the generation of oxidative stress and chronic inflammation. Exposure of the skin to external aggressors such as ultraviolet (UV) radiation and xenobiotics induces the generation of reactive oxygen species (ROS) which subsequently activates immune responses and causes immunological aberrations. Hence, antioxidant and anti-inflammatory agents were considered to be potential compounds to treat skin inflammatory diseases. A prime example of such compounds is xanthone (xanthene-9-one), a class of natural compounds that possess a wide range of biological activities including antioxidant, anti-inflammatory, antimicrobial, cytotoxic, and chemotherapeutic effects. Many studies reported various mechanisms of action by xanthones for the treatment of skin inflammatory diseases. These mechanisms of action commonly involve the modulation of various pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNF-α), as well as anti-inflammatory cytokines such as IL-10. Other mechanisms of action include the regulation of NF-κB and MAPK signaling pathways, besides immune cell recruitment via modulation of chemokines, activation, and infiltration. Moreover, disease-specific activity contributed by xanthones, such as antibacterial action against Propionibacterium acnes and Staphylococcus epidermidis for acne treatment, and numerous cytotoxic mechanisms involving pro-apoptotic and anti-metastatic effects for skin cancer treatment have been extensively elucidated. Furthermore, xanthones have been reported to modulate pathways responsible for mediating oxidative stress and inflammation such as PPAR, nuclear factor erythroid 2-related factor and prostaglandin cascades. These pathways were also implicated in skin inflammatory diseases. Xanthones including the prenylated α-mangostin (2) and γ-mangostin (3), glucosylated mangiferin (4) and the caged xanthone gambogic acid (8) are potential lead compounds to be further developed into pharmaceutical agents for the treatment of skin inflammatory diseases. Future studies on the structure-activity relationships, molecular mechanisms, and applications of xanthones for the treatment of skin inflammatory diseases are thus highly recommended.
  7. Teh SS, Lau HLN, Mah SH
    J Oleo Sci, 2019 Aug 01;68(8):803-808.
    PMID: 31292345 DOI: 10.5650/jos.ess19098
    Refined palm-pressed mesocarp fibre oil (PPFO), which can be obtained from one of the by-products of palm oil milling, palm-pressed mesocarp fibre, is categorized as palm sludge oil. So far, it has been given less attention and underutilized until some recent scientific reports revealing its high content of phytonutrients, carotenoids and vitamin E, which have been proven scientifically to possess anti-oxidant activity. The study evaluated the stability of PPFO as a carrier for plant-based emulsion. PPFO was extracted and examined for its positional distribution of fatty acids, saturation levels and iodine value (IV) using NMR spectroscopy. The PPFO-based emulsion was then prepared and subjected to stability tests, including temperature variation, centrifuge test, cycle test, pH and slip melting point for 28 days. Phase separation was observed from PPFO-based emulsion stored at 40℃ from day-21 onwards while no creaming found in all the palm olein-based emulsions stored at the three storage temperatures. Nevertheless, results indicated that the PPFO-based emulsion passed all the tests above showing insignificant phase separation (p > 0.05) compared with those of palm olein commonly used in emulsion preparation. The findings suggested that PPFO enriched with valuable phytonutrients could be used as an alternative carrier oil in emulsion formulation, which is an important component in personal care products.
  8. Mah SH, Teh SS, Ee GC
    Pharm Biol, 2017 Dec;55(1):920-928.
    PMID: 28152649 DOI: 10.1080/13880209.2017.1285322
    CONTEXT: Sida (Malvaceae) has been used as a traditional remedy for the treatment of diarrhoea, malarial, gastrointestinal dysentery, fevers, asthma and inflammation.

    OBJECTIVES: This study evaluates the anti-inflammatory, cytotoxic and anti-cholinergic activities of Sida rhombifolia Linn. whole plant for the first time.

    MATERIALS AND METHODS: S. rhombifolia whole plant was extracted by n-hexane, ethyl acetate and methanol using Soxhlet apparatus. The plant extracts were evaluated for their antioxidant (DPPH, FIC and FRAP), anti-inflammatory (NO and protein denaturation inhibitions), cytotoxic (MTT) and anti-cholinesterase (AChE) properties in a range of concentrations to obtain IC50 values. GC-MS analysis was carried out on the n-hexane extract.

    RESULTS AND DISCUSSION: The ethyl acetate extract exhibited the most significant antioxidant activities by scavenging DPPH radicals and ferrous ions with EC50 of 380.5 and 263.4 μg/mL, respectively. In contrast, the n-hexane extract showed the strongest anti-inflammatory activity with IC50 of 52.16 and 146.03 μg/mL for NO and protein denaturation inhibition assays, respectively. The same extract also revealed the strongest effects in anti-cholinesterase and cytotoxic tests at the concentration of 100 μg/mL, AChE enzyme inhibition was 58.55% and human cancer cells, SNU-1 and Hep G2 inhibition was 68.52% and 47.82%, respectively. The phytochemicals present in the n-hexane extract are palmitic acid, linoleic acid and γ-sitosterol.

    CONCLUSIONS: The present study revealed that the n-hexane extract possessed relatively high pharmacological activities in anti-inflammation, cytotoxicity and anti-cholinesterase assays. Thus, further work on the detail mechanism of the bioactive phytochemicals which contribute to the biological properties are strongly recommended.

  9. Sin Teh S, Ong ASH, Choo YM, Mah SH
    J Oleo Sci, 2018;67(6):697-706.
    PMID: 29863090 DOI: 10.5650/jos.ess18009
    Saturated fats are commonly claimed to raise human blood cholesterols and contribute to cardiovascular disease. Previous literature data were highlighted that although palm oil is 50% saturated, it does not behave like a saturated fat. Human trials were conducted to compare the effects on serum cholesterol levels given by palm olein and monounsaturated oils. It was postulated that saturation/unsaturation of the fatty acids situated at sn-2 positions of triglycerides in the fat molecules determine the induced blood lipid levels but not the overall saturation of oils. The results showed that the lipid parameters (LDL and HDL) effects induced by these oils are similar with no significant differences. This study provides concrete evidence that the unsaturation levels of these oils at sn-2 position of TG are similar (90-100%) which are claimed to be responsible for the lipid parameters. In conclusion, the public negative perception on believing that the overall saturation of oils is detrimental to health should be corrected because in fact the unsaturation at sn-2 positions of the saturated vegetable fat such as palm olein and cocoa butter make them behave like mono-unsaturated oils, unlike saturated animal fats that possess a high content of saturated fatty acids at sn-2 position.
  10. Hau EH, Teh SS, Yeo SK, Mah SH
    J Sci Food Agric, 2022 Jan 15;102(1):233-240.
    PMID: 34081335 DOI: 10.1002/jsfa.11350
    BACKGROUND: The oil palm tree produces 90% of wastes and the limited usage of these wastes causes a major disposal problem in the mills. Nevertheless, these by-products have a large amount of nutritional components. Thus, the present study aimed to determine the physicochemical and functional properties of protein hydrolysates (PH) from oil palm leaves (OPL) extracted using different concentrations of Alcalase (0-10%) at 2 h of hydrolysis time.

    RESULTS: Fourier transform infrared spectral analyses showed that the enzymatic hydrolysis altered functional groups of OPL where a secondary amine was present in the PH. Changes were also observed in the thermal stability where the enthalpy heat obtained for PH (933.93-1142.57 J g-1 ) was much lower than OPL (7854.11 J g-1 ). The results showed that the PH extracted by 8% Alcalase exhibited absolute zeta potential, as well as a high emulsifying activity index (70.64 m2  g-1 of protein) and emulsion stability index (60.58 min). Furthermore, this PH showed higher solubility (96.32%) and emulsifying properties compared to other PHs. It is also comparable with commercial plant proteins, indicating that 8% Alcalase is an optimum concentration for hydrolysis.

    CONCLUSION: In summary, the physicochemical and functional properties of PH extracted from OPL showed good functional properties, suggesting that it can be used as an alternative plant protein in food industries. © 2021 Society of Chemical Industry.

  11. Mah SH, Lian Ee GC, Teh SS, Sukari MA
    Pak J Pharm Sci, 2015 Mar;28(2):425-9.
    PMID: 25730799
    Structure-activity relationships of eleven xanthones were comparatively predicted for four cancer cell lines after the compounds were subjected to antiproliferative assay against B-lymphocyte cells (Raji), colon carcinoma cells (LS174T), human neuroblastoma cells (IMR-32) and skin carcinoma cells (SK-MEL-28). The eleven chemical constituents were obtained naturally from the stem bark of Calophyllum inophyllum and Calophyllum soulattri. Inophinnin (1) and inophinone (2) were isolated from Calophyllum inophyllum while soulattrin (3) and phylattrin (4) were found from Calophyllum soulattri. The other xanthones were from both Calophyllum sp. and they are pyranojacareubin (5), rheediaxanthone A (6), macluraxanthone (7), 4-hydroxyxanthone (8), caloxanthone C (9), brasixanthone B (10) and trapezifolixanthone (11). Compound 3 was found to be the most cytotoxic towards all the cancer cell lines with an IC50 value of 1.25μg/mL while the simplest xanthone, compound 8 was inactive.
  12. Ng IMJ, Mah SH, Chua CLL
    Nat Prod Res, 2021 Dec;35(23):5409-5414.
    PMID: 32508145 DOI: 10.1080/14786419.2020.1775223
    Macluraxanthone was previously reported to have many biological activities, including anti-cholinesterase, anti-oxidant, anti-cancer, anti-malarial and anti-inflammatory effects. The aim of the current study was to further characterise the effect of macluraxanthone on human macrophage, a type of immune cell that has been implicated in the development of various inflammatory diseases. The expression of surface markers and cytokine production by THP-1 human macrophages following treatment with macluraxanthone were investigated. Macluraxanthone was shown to promote polarisation of M1-like pro-inflammatory macrophages by increasing the percentage of macrophages expressing CD86, while decreasing their CD14, CD11b and CD80 expression. However, in the presence of the pro-inflammatory stimulus lipopolysaccharide, macluraxanthone significantly decreased TNF-α and IL-10 cytokine production.
  13. Teh SS, Hock Ong AS, Mah SH
    J Oleo Sci, 2017;66(11):1183-1191.
    PMID: 29093377 DOI: 10.5650/jos.ess17078
    The environmental impacts of palm oil mill effluent (POME) have been a concern due to the water pollution and greenhouse gases emissions. Thus, this study was conducted to recover the value-added products from POME source before being discharged. The samples, before (X) and after (Y) the pre-recovery system in the clarification tank were sampled and analysed and proximate analysis indicated that both samples are energy rich source of food due to high contents of fats and carbohydrates. GCMS analysis showed that the oil extracts contain predominantly palmitic, oleic, linoleic and stearic acids. Regiospecific analysis of oil extracts by quantitative 13C-NMR spectroscopy demonstrated that both oil extracts contain similar degree of saturation of fatty acids at sn-2 and sn-1,3 positions. The samples are rich in various phytonutrients, pro-vitamin A, vitamin E, squalene and phytosterols, thus contributing to exceptionally high total flavonoid contents and moderate antioxidant activities. Overall, samples X and Y are good alternative food sources, besides reducing the environmental impact of POME.
  14. Vanessa VV, Teh SS, Lam KW, Mah SH
    Nat Prod Res, 2023;37(17):2849-2861.
    PMID: 36398788 DOI: 10.1080/14786419.2022.2137800
    This study focused on the synthesis of 1,3-dihydroxyxanthone (1) and its new derivatives with alkyl (2a-2f), alkenyl (2 g-2k), alkynyl (2 l-2n), and alkylated phenyl (2o-2r) groups at C3 position. The structures of these compounds were confirmed by MS, NMR, and FTIR spectroscopic data. All the substituted xanthones (2a-2r) showed significantly stronger acetylcholinesterase (AChE) inhibitory activities than 1. Compounds 2g and 2j exhibited the strongest activities with the IC50 values of 20.8 and 21.5 μM and their enzyme kinetic analyses indicated a mixed-mode inhibition. Molecular docking study revealed that 2g binds favourably to the active site of AChE via π-π stacking and hydrogen bonding from the xanthone ring, in addition to π-alkyl interaction from the substituent group. These xanthone derivatives are potential lead compounds to be further developed into Alzheimer's disease drugs.
  15. Jin Y, Teh SS, Lau HLN, Mah SH
    J Oleo Sci, 2021 Dec 03;70(12):1749-1759.
    PMID: 34759114 DOI: 10.5650/jos.ess21215
    Refined red palm-pressed mesocarp olein (PPMO) is recovered from palm-pressed mesocarp fiber, which is a by-product from palm oil mill. Its utilization in food industry is extremely limited even though it contains various phytonutrients. Thus, this study aimed to evaluate its toxicity effects by using the male Sprague-Dawley rat model. The rats were administered with a single dose of 2 g/kg PPMO in an acute toxicity study while administered with 2, 1, or 0.5 g/kg PPMO daily for 28 days in a sub-chronic toxicity study. The mortality, oral LD50 value, clinical observation, body and organ weight, hematological and biochemical analyses, pathological and histopathological examinations were assessed. The overall outcomes indicated that PPMO is non-toxic up to 2 g/kg and considered safe to be used in food application, especially as functional food ingredient and supplement attributed to its phytonutrients. Besides, this study provides an insight in alternative utilization of the wastes from palm oil mill.
  16. Teh SS, Ee GC, Mah SH, Yong YK, Lim YM, Rahmani M, et al.
    Biomed Res Int, 2013;2013:517072.
    PMID: 24089682 DOI: 10.1155/2013/517072
    The in vitro cytotoxicity tests on the extracts of Mesua beccariana, M. ferrea, and M. congestiflora against Raji, SNU-1, HeLa, LS-174T, NCI-H23, SK-MEL-28, Hep-G2, IMR-32, and K562 were achieved using MTT assay. The methanol extracts of Mesua beccariana showed its potency towards the proliferation of B-lymphoma cell (Raji). In addition, only the nonpolar to semipolar extracts (hexane to ethyl acetate) of the three Mesua species indicated cytotoxic effects on the tested panel of human cancer cell lines. Antioxidant assays were evaluated using DPPH scavenging radical assay and Folin-Ciocalteu method. The methanol extracts of M. beccariana and M. ferrea showed high antioxidant activities with low EC₅₀ values of 12.70 and 9.77  μg/mL, respectively, which are comparable to that of ascorbic acid (EC₅₀ = 5.62  μg/mL). Antibacterial tests were carried out using four Gram positive and four Gram negative bacteria on Mesua beccariana extracts. All the extracts showed negative results in the inhibition of Gram negative bacteria. Nevertheless, methanol extracts showed some activities against Gram positive bacteria which are Bacillus cereus, methicillin-sensitive Staphylococcus aureus (MSSA), and methicillin-resistant Staphylococcus aureus (MRSA), while the hexane extract also contributed some activities towards Bacillus cereus.
  17. Teh SS, Cheng Lian Ee G, Mah SH, Lim YM, Rahmani M
    Molecules, 2012 Sep 10;17(9):10791-800.
    PMID: 22964497 DOI: 10.3390/molecules170910791
    An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione, along with several known constituents which are beccamarin, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone, 4-methoxy-1,3,5-trihydroxyanthraquinone, betulinic acid and stigmasterol were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma), SNU-1 (gastric carcinoma), K562 (erythroleukemia cells), LS-174T (colorectal adenocarcinoma), HeLa (cervical cells), SK-MEL-28 (malignant melanoma cells), NCI-H23 (lung adenocarcinoma), IMR-32 (neuroblastoma) and Hep-G2 (hepatocellular liver carcinoma) were carried out using an MTT assay. Mesuadione, beccamarin, betulinic acid and stigmasterol displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol and beccamarin, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.
  18. Ee GC, Mah SH, Teh SS, Rahmani M, Go R, Taufiq-Yap YH
    Molecules, 2011 Nov 23;16(11):9721-7.
    PMID: 22113580 DOI: 10.3390/molecules16119721
    The extracts of the stem bark of Calophyllum soulattri gave a new pyranocoumarin, soulamarin (1), together with five other xanthones caloxanthone B (2), caloxanthone C (3), macluraxanthone (4), trapezifolixanthone (5) and brasixanthone B (6) one common triterpene, friedelin (7), and the steroidal triterpene stigmasterol (8). The structures of these compounds were established based on spectral evidence (1D and 2D NMR).
  19. Ee GC, Mah SH, Kwong HC, Teh SS, Mohamed Tahir MI, Silong S
    Acta Crystallogr Sect E Struct Rep Online, 2011 Oct 1;67(Pt 10):o2607-8.
    PMID: 22064829 DOI: 10.1107/S1600536811036294
    THE TITLE COMPOUND [SYSTEMATIC NAME: 5,10-di-hy-droxy-2,2-di-methyl-12-(2-methyl-but-3-en-2-yl)-pyrano[3,2-b]xanthen-6(2H)-one], C(23)H(22)O(5), isolated from the stem bark of Calophyllum soulattri, consists of four six-membered rings and a 2-methyl-but-3-en-2-yl side chain. The tricyclic xanthone ring system is almost planar [maximum deviation = 0.093 (2) Å], whereas the pyran-oid ring is in a distorted boat conformation. The 2-methyl-but-3-en-2-yl side chain is in a synperiplanar conformation. There are two intra-molecular O-H⋯O hydrogen bonds. In the crystal, mol-ecules are linked by C-H⋯O inter-actions, forming a zigzag chain propagating in [010].
  20. Ee GC, Mah SH, Rahmani M, Taufiq-Yap YH, Teh SS, Lim YM
    J Asian Nat Prod Res, 2011 Oct;13(10):956-60.
    PMID: 21972812 DOI: 10.1080/10286020.2011.600248
    The stem bark extracts of Calophyllum inophyllum furnished one new furanoxanthone, inophinnin (1), in addition to inophyllin A (2), macluraxanthone (3), pyranojacareubin (4), 4-hydroxyxanthone, friedelin, stigmasterol, and betulinic acid. The structures of these compounds were determined by spectroscopic analysis of 1D and 2D NMR spectral data ((1)H, (13)C, DEPT, COSY, HMQC, and HMBC) while EI-MS gave the molecular mass. The new xanthone, inophinnin (1), exhibited some anti-inflammatory activity in nitric oxide assay.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links