It has been recognized extensively that studies of pharmacogenetics provide massive examples of causal relationship between genotypes and drug effectiveness to account for interindividual phenotypic variations in drug therapy. In most cases, cytochrome P450 (CYP) polymorphisms are one of the major variables that affecting those drug plasma concentration, drug detoxification and drug activation in humans. Thus, understanding of CYP polymorphisms can be crucially valuable in order to allow early and more accurate drug dosage prediction and improve the drug response accordingly. Despite the high level of homologous amino acid sequences, CYP2C9 and CYP2C19 genes are among the most important CYP genes which metabolize a wide range of clinically therapeutic drugs. Several critical reviews have been published relating to the aforementioned genes. However, this minireview aims to systematically merge reported studies on the SNPs frequencies of both genes concentrating only on Malaysian population. It is hoped that, the minireview can be an opener for new opportunities to reevaluate the evidence on the prevalence of CYP2C genes as a potential genetic factor influencing a particular drug efficacy and safety among Malaysian. Such evaluation can be developed to the next level of early prediction of better and specific drug treatment, thereby improving the drug response while helping the government in minimising the drug expenditures.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked red blood cell enzymopathy common in malaria endemic areas. Individuals affected by this disease show a wide variety of clinical signs including neonatal jaundice. In this preliminary report we describe the heterogeneity of G6PD deficient gene in neonatal jaundice in the Malay population in Kelantan. Thirteen G6PD deficient Malay neonates with hyperbilirubinemia were subjected to mutation analysis of the G6PD gene for known candidate mutations. Molecular defects were identified in the 13 patients studied. Though all of these were mis-sense mutations, identified nucleotide changes were heterogeneous. Six patients were found to have a C to T nucleotide change at nucleotide 563 of the G6PD gene (C563T), corresponding to G6PD Mediterranean; three cases had a single nucleotide change at T383C (G6PD Vanua Lava), two cases had G487A (G6PD Mahidol) and two cases had G1376T (G6PD Canton). These findings suggest that there are heterogeneous mutations of the G6PD gene associated with neonatal jaundice in the Malay population in Kelantan.
Cancer stem cells (CSCs) are a subpopulation of cancer cells that play a pivotal role in tumor development, invasion, metastasis, and recurrence. We and others have reported significant involvement of the NF-κB pathway in regulating CSCs of non-small cell lung cancer (NSCLC). In this study, we evaluated the effects of NF-κB inhibition on self-renewal, stemness, migration, and expression of genes involved in the epithelial to mesenchymal transition (EMT) and apoptosis resistance in lung CSCs. Different concentrations of the NF-κB inhibitor BMS-345541 (0.4, 4.0, and 10.0 µM), an inhibitor the NF-κB upstream kinase IKKβ, were used to treat both lung CSCs (CD166+CD44+, CD166+EpCAM+) and non-CSC NSCLC cells (CD166-CD44-, CD166-EpCAM-) in A549 and H2170 cell lines. We assessed the impact of BMS-345541 on the ability to form tumorspheres (self-renewal assay), expression of stemness genes (SOX2, OCT4, NANOG, SCA-1, and KLF4), migration, and expression of EMT and apoptosis-related genes. Inhibition of NF-κB by BMS-345541 effectively reduced the stemness, self-renewal, and migration capacity of lung CSCs. Moreover, expression of genes involved in the EMT (SNAI1 and TWIST) and apoptosis resistance (BCL-2, BAX, and BIRC5) was significantly reduced following the treatments, suggesting that NF-κB inhibition is sufficient to prevent the EMT and induce apoptosis in lung CSCs. Our findings suggest that NF-κB inhibition could reduce the capability of CSCs to maintain their population within the tumor mass, potentially decelerating cancer progression, relapse, and chemotherapy resistance.
Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes from G6PD-deficient individuals.
CYP2C9 gene polymorphisms modulate inter-individual variations in the human body's responses to various endogenous and exogenous drug substrates. To date, little is known about the CYP2C9 gene polymorphisms among the aboriginal populations of the world, including those in Malaysia.
Traumatic brain injury (TBI) could result in life-long disabilities and death. Though the mechanical insult causes primary injury, the secondary injury due to dysregulated responses following neuronal apoptosis and inflammation is often the cause for more detrimental consequences. Mesenchymal stromal cell (MSC) has been extensively investigated as the emerging therapeutic for TBI, and the functional properties are chiefly attributed to their secretome, especially the exosomes. Delivering these nanosize exosomes have shown to ameliorate post-traumatic injury and restore brain functions. Recent technology advances also allow engineering MSC-derived exosomes to carry specific biomolecules of interest to augment their therapeutic outcome. In this review, we discuss the pathophysiology of TBI and summarize the recent progress in the applications of MSCs-derived exosomes, the roles and the signalling mechanisms underlying the protective effects in the treatment of the TBI.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked red blood cell enzymopathy common in malaria endemic areas. Individuals affected by this disease show a wide variety of clinical signs of acute hemolytic anemia. Mutations of the G6PD gene in the Malay population with G6PD deficiency in Kelantan, a state in North East Malaysia were studied. Ninety-three individuals with G6PD deficiency were subjected to mutation analysis of the G6PD gene using polymerase chain reaction based techniques of multiplex PCR. Of the ninety-three DNA samples studied, molecular defects were identified in 80 cases (86%). Variants were heterogeneous - 28.7% were found to have a G to A nucleotide change at nucleotide 871 of the G6PD gene (G871A), corresponding to G6PD Viangchan. The other major mutations were G6PD Mediterranean, G6PD Vanua Lava, G6PD Coimbra, G6PD Kaiping, G6PD Orissa, G6PD Mahidol, G6PD Canton and G6PD Chatham. These results showed that there are heterogeneous mutations of the G6PD gene associated with G6PD deficiency and that G6PD Viangchan and G6PD Mediterranean account for the main variants in G6PD deficiency among the Malay population in Malaysia.
Constitutive androstane receptor (CAR) encoded by the nuclear receptor subfamily 1, group I, member 3 (NR1I3) gene regulates the elimination of bilirubin through activating the components of the bilirubin clearance pathway. Hence, NR1I3 genetic variants may affect bilirubin metabolism and result in neonatal hyperbilirubinemia. Thus far, research which investigates the association between NR1I3 variants and neonatal hyperbilirubinemia has not been undertaken in any population. The present study aimed to evaluate the influence of MPJ6_1I3008 (rs10157822), IVS8+116T>G (rs4073054) and 540A>G (rs2307424) on neonatal hyperbilirubinemia development in the Malay population. Buccal swabs were collected from 232 hyperbilirubinemia and 277 control term newborns with gestational age ≥37weeks and birth weight ≥2500g. The NR1I3 variants were genotyped by using high resolution melting (HRM) assays and verified by DNA sequencing. Gender, mode of delivery and birth weight did not differ between hyperbilirubinemia and control groups. The genotypic and allelic frequencies of MPJ6_1I3008, IVS8+116T>G and 540A>G were not significantly different between the groups. However, stratification by gender revealed a significant inverse association between homozygous variant genotype of MPJ6_1I3008 and risk of neonatal hyperbilirubinemia in the females (OR, 0.44; 95% CI, 0.20-0.95; p=0.034). This study demonstrates that the homozygous variant genotype of MPJ6_1I3008 was associated with a significant reduced risk of neonatal hyperbilirubinemia in the females.
Attempts in current health care practice to make health care more accessible, effective, and efficient through the use of information technology could include implementation of computer-based dietary menu generation. While several of such systems already exist, their focus is mainly to assist healthy individuals calculate their calorie intake and to help monitor the selection of menus based upon a prespecified calorie value. Although these prove to be helpful in some ways, they are not suitable for monitoring, planning, and managing patients' dietary needs and requirements. This paper presents a Web-based application that simulates the process of menu suggestions according to a standard practice employed by dietitians.
Recurrent spontaneous abortion (RSA) is a prevalent condition among the Malay population of Malaysia, where carriage risk of conventional hereditary thrombophilia factors has been generally ruled out. The contribution of M2/ANXA5, a common haplotype in the annexin A5 gene promoter, was evalauted for RSA in Malay. Seventy-seven women who had experienced two or more unexplained RSA and 41 available male partners were selected for study, with 360 population controls recruited from healthy Malay individuals. Incidence of M2 carriage and odds ratios were calculated between control and patient groups, and clinically defined subgroups and RSA risk was evaluated. M2/ANXA5, found in 42.2% of the general Malay population, was associated with greater risks for women with primary and secondary RSA with early (gestational week 5-15) losses. The risk was somewhat higher in Malay couples when both partners were carriers and a trend of higher prevalence was seen for the male partners patients who had experienced RSA. M2 carriage seems to be a risk factor with unusually high incidence in Malay women and couples with primary and secondary RSA with 'early' spontaneous abortions. The associated male partner risk confirms the proposed role of M2/ANXA5 as a genetic trait impeding embryonic anticoagulation.
Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder characterized by tumor growth in multiple organs and caused by mutations in either TSC1 or TSC2 genes. Because of their relatively large genomic sizes, absence of hotspots, and common type of mutations, mutation detection in TSC1 and TSC2 genes has been challenging. We devised a combination of multiple ligation-dependent probe amplification (MLPA) and amplicon sequencing (AS) to simplify the detection strategy, yet we come up with reasonably high detection rate. Thirty-four Malaysian patients diagnosed with TSC were referred to Human Genome Center, Universiti Sains Malaysia. We used a combination of MLPA to detect large copy number changes and AS to detect smaller mutations. TSC1 pathogenic or likely pathogenic mutations were found in 6 patients (18%) and TSC2 in 21 patients (62%), whereas 6 patients (18%) show no mutations and 1 patient (2%) showed only TSC2 missense variant with uncertain significance. Six of the mutations are novel. Our detection strategy costs 81% less and require 1 working week less than the conventional strategy. Confirmatory sequencing using Sanger method on a few representative mutations showed agreement with results of the AS. Combination of MLPA and Illumina MiSeq AS provides a simplified strategy and reasonably high detection rate for TSC1/TSC2 mutation, which suggested application of the strategies into clinical molecular diagnostics.
Thalassemia is one of the most prevalent monogenic disorders in low- and middle-income countries (LMICs). There are an estimated 270 million carriers of hemoglobinopathies (abnormal hemoglobins and/or thalassemia) worldwide, necessitating global methods and solutions for effective and optimal therapy. LMICs are disproportionately impacted by thalassemia, and due to disparities in genomics awareness and diagnostic resources, certain LMICs lag behind high-income countries (HICs). This spurred the establishment of the Global Globin Network (GGN) in 2015 at UNESCO, Paris, as a project-wide endeavor within the Human Variome Project (HVP). Primarily aimed at enhancing thalassemia clinical services, research, and genomic diagnostic capabilities with a focus on LMIC needs, GGN aims to foster data collection in a shared database by all affected nations, thus improving data sharing and thalassemia management. In this paper, we propose a minimum requirement for establishing a genomic database in thalassemia based on the HVP database guidelines. We suggest using an existing platform recommended by HVP, the Leiden Open Variation Database (LOVD) (https://www.lovd.nl/). Adoption of our proposed criteria will assist in improving or supplementing the existing databases, allowing for better-quality services for individuals with thalassemia. Database URL: https://www.lovd.nl/.