Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Anuar Ithnin, Muhammad Amirul
    MyJurnal
    Students’ knowledge, attitude and practice towards safety and health are one of the important aspects of their learning
    process in school. Negligence of this aspect can increase the risk of accidents among students. This study was conducted to assess the
    level of knowledge, attitudes and practices (KAP) of students toward safety and health aspects in school. This study was participated
    by 410 Form Four students that were randomly selected. They are from SMK Sultan Alauddin Riayat Shah 1 (SARS1), SMK Taman
    Dato’ Harun (SMKTDH) and SMK Agama Sheikh Hj. Mohd Said (SHAMS). Questionnaire used consists of demographic components,
    knowledge, attitude and practice items towards safety and health aspects. Majority of the respondents are female students (58.3%)
    while the rest are male students (41.7%). Higher percentage of respondents are from SMKTDH (59.5%) followed by SHAMS (24.1%)
    and SARS1 (16.3%). This study found that the level of knowledge, attitude and practice of students toward safety and health aspects
    in school are high. The mean score of all knowledge, attitude and practice items in the questionnaire are 4.29±0.40, 4.07±0.46,
    and 4.13±0.48, respectively. In addition, this study found that the school factors are significantly associated with student’s attitude
    and practice, while the gender factor is only significantly associated with student’s attitude towards safety and health in school.
    Meanwhile, correlation analysis showed a significant relationship between student’s knowledge, attitude and practice (p
  2. Shaharuddin Mohd Sham, Mohamad Azri M. Y., Mohd Akmal Asyiq Z., Muhammad Amirul Afif H.
    MyJurnal
    Nitrate fertilizer is extensively used to produce healthy crops on a wide scale, and paddy planting is no exception. Nitrate that is not used by plants is able to penetrate the soil and end up in groundwater. This, if not checked, can give rise to health problems including infant methemoglobinaemia, a disease where hemoglobin in erythrocytes are changed into methemoglobin by nitrite which, in turn, makes it unable to transport oxygen to body cells. Nitrite is formed from ingested nitrate that is altered by bacteria present in the infant’s stomach. This cross-sectional study was conducted in February 2019 for 2 weeks’ observation during the paddy pre-planting season, and a total of 149 wells across three villages were sampled for nitrate. Readings were compared to the Drinking Water Quality Standard stated by the Ministry of Health, Malaysia. The maximum acceptable value for nitrate in drinking water is 45 mg/L nitrate (NO3-). The three villages, namely Keting, Kuchelong and Telaga Ara, were chosen as they are located near paddy fields and water from wells were used for drinking and cooking without filtration. It was found that only one (0.67%) of the wells had nitrate above the maximum acceptable value (56.85 mg/L NO3-). This highest value was found in Telaga Ara village and the location of the well was 50m from the nearest paddy fields. In Kuchelong village, the mean nitrate level was 5.10 +0.85 mg/L with a range of 0.73 to 27.10 mg/L. While in Telaga Ara village, the mean nitrate levels was 10.52 +1. 24 mg/L with a range of 1.67 to 56.85 mg/L. Mean nitrate level in Keting village was 5.34 + 4.94 mg/L with a range of 0.40 -23.65 mg/L. In general, nitrate levels were found to be below the maximum acceptable value in the villages concerned and therefore did not pose any health risks to users. Periodic assessment of nitrate in groundwater is still important as to ensure the levels remain below the acceptable value, and in turn, safeguard the health of its users.
  3. Zahari Taha, Wong, Yashim, Muhammad Amirul Abdullah, Yap, Hwa Jen, Wee, Kian Yeo
    Movement Health & Exercise, 2018;7(1):201-209.
    MyJurnal
    Immersion is one of the most important aspects in ensuring the applicability
    of Virtual Reality systems to training regimes aiming to improve
    performance. To ensure that this key aspect is met, the registration of motion
    between the real world and virtual environment must be made as accurate and
    as low latency as possible. Thus, an in-house developed Inertial Measurement
    Unit (IMU) system is developed for use in tracking the movement of the
    player’s racquet. This IMU tracks 6 DOF motion data and transmits it to the
    mobile training system for processing. Physically, the custom motion is built
    into the shape of a racquet grip to give a more natural sensation when
    swinging the racquet. In addition to that, an adaptive filter framework is also
    established to cope with different racquet movements automatically, enabling
    real-time 6 DOF tracking by balancing the jitter and latency. Experiments are
    performed to compare the efficacy of our approach with other conventional
    tracking methods such as the using Microsoft Kinect. The results obtained
    demonstrated noticeable accuracy and lower latency when compared with the
    aforementioned methods.
  4. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y
    Sci Rep, 2019 Nov 14;9(1):16782.
    PMID: 31728061 DOI: 10.1038/s41598-019-53421-w
    Asymmetric supercapacitors (ASC) have shown a great potential candidate for high-performance supercapacitor due to their wide operating potential which can remarkably enhance the capacitive behaviour. In present work, a novel positive electrode derived from functionalised carbon nanofibers/poly(3,4-ethylenedioxythiophene)/manganese oxide (f-CNFs/PEDOT/MnO2) was prepared using a multi-step route and activated carbon (AC) was fabricated as a negative electrode for ASC. A uniform distribution of PEDOT and MnO2 on f-CNFs as well as porous granular of AC are well-observed in FESEM. The assembled f-CNFs/PEDOT/MnO2//AC with an operating potential of 1.6 V can achieve a maximum specific capacitance of 537 F/g at a scan rate of 5 mV/s and good cycling stability (81.06% after cycling 8000 times). Furthermore, the as-prepared ASC exhibited reasonably high specific energy of 49.4 Wh/kg and low charge transfer resistance (Rct) of 2.27 Ω, thus, confirming f-CNFs/PEDOT/MnO2//AC as a promising electrode material for the future energy storage system.
  5. Ruhana Hassan, Nur Fatimah Mohd Azizi, Muhammad Amirul Arib Md Adzhar, Mohd Izwan Zulaini Abdul Gani, Rambli Ahmad, Charles Leh Moi Ung
    MyJurnal
    This study documented details of the dentitions, skulls and other skeletal remains of Crocodylus porosus and Tomistoma schlegelii, from western part of Sarawak, Malaysian Borneo. The remains of both reptiles were exhumed, followed by standard cleaning procedures and then detail morphological assessments were carried out accordingly. Both species show similar structure of vertebral columns, but T. schlegelii has the following unique structures: a long and narrower snout, D-shaped eye sockets, long and sharp pointed protruding quadratojugal bones, straight maxillae and dentary, a smooth surfaced skull, elongated triangular suborbital fenestrae, round shaped internal nares and visible supraoccipital from a dorsal view. C. porosus has heterodont dentition with blunt-pointed and irregular size of teeth whereas T. schlegelii has almost homodont dentition with sharp and similar size teeth. This is the first collection of teeth, skulls and other skeletal remains of both species obtained from Sarawak, and the materials have been used regularly to educate the public through science exhibitions, hoping they will spark the interests of young budding scientists to be involved in wildlife taphonomic studies in the future.
  6. Arif MMA, Fauzi MB, Nordin A, Hiraoka Y, Tabata Y, Yunus MHM
    Polymers (Basel), 2020 Nov 13;12(11).
    PMID: 33202700 DOI: 10.3390/polym12112678
    Gelatin possesses biological properties that resemble native skin and can potentially be fabricated as a skin substitute for full-thickness wound treatment. The native property of gelatin, whereby it is easily melted and degraded at body temperature, could prevent its biofunctionality for various applications. This study aimed to fabricate and characterise buffalo gelatin (Infanca halal certified) crosslinked with chemical type crosslinker (genipin and genipin fortified with EDC) and physicaly crosslink using the dihydrothermal (DHT) method. A porous gelatin sponge (GS) was fabricated by a freeze-drying process followed by a complete crosslinking via chemical-natural and synthetic-or physical intervention using genipin (GNP), 1-ethyl-3-(3-dimethylaminopropyl) (EDC) and dihydrothermal (DHT) methods, respectively. The physicochemical, biomechanical, cellular biocompatibility and cell-biomaterial interaction of GS towards human epidermal keratinocytes (HEK) and dermal fibroblasts (HDF) were evaluated. Results showed that GS had a uniform porous structure with pore size ranging between 60 and 200 µm with high porosity (>78.6 ± 4.1%), high wettability (<72.2 ± 7.0°), high tensile strain (>13.65 ± 1.10%) and 14 h of degradation rate. An increase in the concentration and double-crosslinking approach demonstrated an increment in the crosslinking degree, enzymatic hydrolysis resistance, thermal stability, porosity, wettability and mechanical strength. The GS can be tuned differently from the control by approaching the GS via a different crosslinking strategy. However, a decreasing trend was observed in the pore size, water retention and water absorption ability. Crosslinking with DHT resulted in large pore sizes (85-300 µm) and low water retention (236.9 ± 18.7 g/m2·day) and a comparable swelling ratio with the control (89.6 ± 7.1%). Moreover no changes in the chemical content and amorphous phase identification were observed. The HEK and HDF revealed slight toxicity with double crosslinking. HEK and HDF attachment and proliferation remain similar to each crosslinking approach. Immunogenicity was observed to be higher in the double-crosslinking compared to the single-crosslinking intervention. The fabricated GS demonstrated a dynamic potential to be tailored according to wound types by manipulating the crosslinking intervention.
  7. Hashimi AS, Nohan MANM, Chin SX, Khiew PS, Zakaria S, Chia CH
    Nanomaterials (Basel), 2020 Jun 12;10(6).
    PMID: 32545513 DOI: 10.3390/nano10061153
    : Hydrogen (H2) is a clean energy carrier which can help to solve environmental issues with the depletion of fossil fuels. Sodium borohydride (NaBH4) is a promising candidate material for solid state hydrogen storage due to its huge hydrogen storage capacity and nontoxicity. However, the hydrolysis of NaBH4 usually requires expensive noble metal catalysts for a high H2 generation rate (HGR). Here, we synthesized high-aspect ratio copper nanowires (CuNWs) using a hydrothermal method and used them as the catalyst for the hydrolysis of NaBH4 to produce H2. The catalytic H2 generation demonstrated that 0.1 ng of CuNWs could achieve the highest volume of H2 gas in 240 min. The as-prepared CuNWs exhibited remarkable catalytic performance: the HGR of this study (2.7 × 1010 mL min-1 g-1) is ~3.27 × 107 times higher than a previous study on a Cu-based catalyst. Furthermore, a low activation energy (Ea) of 42.48 kJ mol-1 was calculated. Next, the retreated CuNWs showed an outstanding and stable performance for five consecutive cycles. Moreover, consistent catalytic activity was observed when the same CuNWs strip was used for four consecutive weeks. Based on the results obtained, we have shown that CuNWs can be a plausible candidate for the replacement of a costly catalyst for H2 generation.
  8. Noh MAA, Fazalul Rahiman SS, A Wahab H, Mohd Gazzali A
    J Basic Clin Physiol Pharmacol, 2021 Jun 25;32(4):715-722.
    PMID: 34214294 DOI: 10.1515/jbcpp-2020-0435
    OBJECTIVES: Tuberculosis (TB) remains a public health concern due to the emergence and evolution of multidrug-resistant strains. To overcome this issue, reinforcing the effectiveness of first line antituberculosis agents using targeted drug delivery approach is an option. Glyceraldehyde-3-Phosphate Dehydrogenase (GADPH), a common virulence factor found in the pathogenic microorganisms has recently been discovered on the cell-surface of Mycobacterium tuberculosis, allowing it to be used as a drug target for TB. This study aims to discover active small molecule(s) that target GAPDH and eventually enhance the delivery of antituberculosis drugs.

    METHODS: Ten ligands with reported in vitro and/or in vivo activities against GAPDH were evaluated for their binding interactions through molecular docking studies using AutoDock 4.2 program. The ligand with the best binding energy was then modified to produce 10 derivatives, which were redocked against GAPDH using previous protocols. BIOVIA Discovery Studio Visualizer 2019 was used to explore the ligand-receptor interactions between the derivatives and GAPDH.

    RESULTS: Among the 10 ligands, curcumin, koningic acid and folic acid showed the best binding energies. Further analysis on the docking of two folic acid derivatives, F7 (γ-{[tert-butyl-N-(6-aminohexyl)]carbamate}folic acid) and F8 (folic acid N-hydroxysuccinimide ester) showed that the addition of a bulky substituent at the carboxyl group of the glutamic acid subcomponent resulted in improved binding energy.

    CONCLUSIONS: Folic acid and the two derivatives F7 and F8 have huge potentials to be developed as targeting agents against the GAPDH receptor. Further study is currently on-going to evaluate the effectiveness of these molecules in vitro.

  9. Saminathan M, Mohamed WNW, Noh 'M, Ibrahim NA, Fuat MA, Ramiah SK
    Trop Anim Health Prod, 2022 Jan 17;54(1):64.
    PMID: 35038035 DOI: 10.1007/s11250-022-03046-5
    Palm oil is a natural energy source ingredient in poultry diets that offers a broad range of beneficial effects on the performance of broiler chickens. This review was conducted to highlight the impact of palm oil as a feed ingredient on growth performance and carcass quality, as well as the biochemical, antioxidant activity and tissue fatty acids (FA) composition of broiler chickens. Palm oil inclusion in broiler chickens' rations contributes significantly to the high metabolisable energy (ME) of feed formulation, increases feed palatability and decreases digesta passage rate in the intestine. The reviewed literature indicated that dietary palm oil has a beneficial effect on broiler chickens' overall growth performance traits. The addition of palm oil can also improve the heat tolerance of chickens reared in high ambient temperature conditions. Regardless of breed and breeding conditions, palm oil exhibits good oxidative stability in broiler chickens due to the presence of prevalent phytonutrient elements in this oil. The inclusion of palm oil increased palmitic (C16:0) and oleic (C18:1) acids in tissue deposits, which improves meat stability and quality. Moreover, molecular studies have revealed that higher mRNA expression of several lipid-related hepatic genes in broiler chickens fed palm oil. Nonetheless, dietary palm oil can influence FA deposition in tissues, modulate lipoprotein and triglycerides (TG) levels, and cytokine contents in the blood serum of broiler chickens.
  10. Ali NA, Ahmad MAN, Yahya MS, Sazelee N, Ismail M
    Nanomaterials (Basel), 2022 Nov 07;12(21).
    PMID: 36364697 DOI: 10.3390/nano12213921
    Despite the application of lithium aluminium hydride (LiAlH4) being hindered by its sluggish desorption kinetics and unfavourable reversibility, LiAlH4 has received special attention as a promising solid-state hydrogen storage material due to its hydrogen storage capacity (10.5 wt.%). In this work, investigated for the first time was the effect of the nanosized cobalt titanate (CoTiO3) which was synthesised via a solid-state method on the desorption behaviour of LiAlH4. Superior desorption behaviour of LiAlH4 was attained with the presence of a CoTiO3 additive. By means of the addition of 5, 10, 15 and 20 wt.% of CoTiO3, the initial desorption temperature of LiAlH4 for the first stage was reduced to around 115−120 °C and the second desorption stage was reduced to around 144−150 °C, much lower than for undoped LiAlH4. The LiAlH4-CoTiO3 sample also presents outstanding desorption kinetics behaviour, desorbing hydrogen 30−35 times faster than undoped LiAlH4. The LiAlH4-CoTiO3 sample could desorb 3.0−3.5 wt.% H2 in 30 min, while the commercial and milled LiAlH4 desorbs <0.1 wt.% H2. The apparent activation energy of the LiAlH4-CoTiO3 sample based on the Kissinger analysis was decreased to 75.2 and 91.8 kJ/mol for the first and second desorption stage, respectively, lower by 28.0 and 24.9 kJ/mol than undoped LiAlH4. The LiAlH4-CoTiO3 sample presents uniform and smaller particle size distribution compared to undoped LiAlH4, which is irregular in shape with some agglomerations. The experimental results suggest that the CoTiO3 additive promoted notable advancements in the desorption performance of LiAlH4 through the in situ-formed AlTi and amorphous Co or Co-containing active species that were generated during the desorption process.
  11. Dewika M, Markandan K, Irfan NA, Mohd Abdah MAA, Ruwaida JN, Sara YY, et al.
    Chemosphere, 2023 May;324:138270.
    PMID: 36878370 DOI: 10.1016/j.chemosphere.2023.138270
    The emergence of microplastics (MPs) pollution as a global environmental concern has attracted significant attention in the last decade. The majority of the human population spends most of their time indoors, leading to increased exposure to MPs contamination through various sources such as settled dust, air, drinking water and food. Although research on indoor MPs has intensified significantly in recent years, comprehensive reviews on this topic remain limited. Therefore, this review comprehensively analyses the occurrence, distribution, human exposure, potential health impact and mitigation strategies of MPs in the indoor air environment. Specifically, we focus on the risks associated with finer MPs that can translocate into the circulatory system and other organs, emphasizing the need for continued research to develop effective strategies to mitigate the risks associated with MPs exposure. Our findings suggest that indoor MPs impose potential risk to human health, and strategies for mitigating exposure should be further explored.
  12. Shafiee FN, Mohd Noor SA, Mohd Abdah MAA, Jamal SH, Samsuri A
    Heliyon, 2024 Apr 30;10(8):e29512.
    PMID: 38699753 DOI: 10.1016/j.heliyon.2024.e29512
    The incorporation of intermittent renewable energy sources into a consistently controlled power transmission system hinges on advancements in energy storage technologies. Sodium ion batteries (SIBs) are emerging as a primary and viable alternative material due to their electrochemical activity, presenting a potential replacement for the next generation of lithium-ion battery (LIB) energy storage materials. However, this transition may necessitate significant alterations in the anode material, given the incompatibility of the current anode with sodium ions and the electrolyte. This review provides a comprehensive summary of various anode materials employed in SIBs, categorized according to their storage mechanisms. Additionally, it explores the growing focus on utilizing hard carbon as an anode material, driven by factors such as its relatively high specific capacity compared to graphite, cost-effective production, and eco-friendly properties as it can be derived from biomass. The review further addresses recent progress in hard carbon, detailing production methods, modifications, challenges, limitations in integrating hard carbon into the anode of SIBs, and suggests potential directions for future research.
  13. Hashimi AS, Nohan MANM, Chin SX, Zakaria S, Chia CH
    Nanomaterials (Basel), 2019 Jun 28;9(7).
    PMID: 31261696 DOI: 10.3390/nano9070936
    Copper nanowires (CuNWs) with a high aspect ratio of ~2600 have been successfully synthesized by using a facile hydrothermal method. The reductions of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and methylene blue (MB) to leucomethylene blue (LMB) by using sodium borohydride (NaBH4) were used as models to test the catalytic activity of CuNWs. We showed that by increasing the CuNWs content, the rate of reduction increased as well. The CuNWs showed an excellent catalytic performance where 99% reduction of 4-NP to 4-AP occurred in just 60 s by using only 0.1 pg of CuNWs after treatment with glacial acetic acid (GAA). The rate constant (kapp) and activity factor (K) of this study is 18 and ~1010 fold in comparison to previous study done with no GAA treatment applied, respectively. The CuNWs showed an outstanding catalytic activity for at least ten consecutive reusability tests with a consistent result in 4-NP reduction. In clock reaction of MB, approximately 99% of reduction of MB into LMB was achieved in ~5 s by using 2 μg CuNWs. Moreover, the addition of NaOH can improve the rate and degree of recolorization of LMB to MB.
  14. Mohanadas D, Mohd Abdah MAA, Azman NHN, Ravoof TBSA, Sulaiman Y
    Sci Rep, 2021 Jun 03;11(1):11747.
    PMID: 34083589 DOI: 10.1038/s41598-021-91100-x
    A novel poly(3,4-ethylenedioxythiophene)-reduced graphene oxide/copper-based metal-organic framework (PrGO/HKUST-1) has been successfully fabricated by incorporating electrochemically synthesized poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (PrGO) and hydrothermally synthesized copper-based metal-organic framework (HKUST-1). The field emission scanning microscopy (FESEM) and elemental mapping analysis revealed an even distribution of poly(3,4-ethylenedioxythiophene) (PEDOT), reduced graphene oxide (rGO) and HKUST-1. The crystalline structure and vibration modes of PrGO/HKUST-1 were validated utilizing X-ray diffraction (XRD) as well as Raman spectroscopy, respectively. A remarkable specific capacitance (360.5 F/g) was obtained for PrGO/HKUST-1 compared to HKUST-1 (103.1 F/g), PrGO (98.5 F/g) and PEDOT (50.8 F/g) using KCl/PVA as a gel electrolyte. Moreover, PrGO/HKUST-1 composite with the longest charge/discharge time displayed excellent specific energy (21.0 Wh/kg), specific power (479.7 W/kg) and an outstanding cycle life (95.5%) over 4000 cycles. Thus, the PrGO/HKUST-1 can be recognized as a promising energy storage material.
  15. Mohd Abdah MAA, Mohammad Azlan FN, Wong WP, Mustafa MN, Walvekar R, Khalid M
    Chemosphere, 2024 Feb;349:140973.
    PMID: 38122940 DOI: 10.1016/j.chemosphere.2023.140973
    The increasing demand for high-performance lithium-ion batteries (LIBs) has emphasized the need for affordable and sustainable materials, prompting the exploration of waste upcycling to address global sustainability challenges. In this study, we efficiently converted polypropylene (PP) plastic waste from used centrifuge tubes into activated polypropylene carbon (APC) using microwave-assisted pyrolysis. The synthesis of APC was optimized using response surface methodology/central composite design (RSM/CCD). Based on the RSM results, the optimal conditions for PP plastic conversion into carbon were determined as follows: HNO3 concentration of 3.5 M, microwave temperature of 230 °C, and holding time of 25 min. Under these conditions, the obtained intensity ratio of Id/Ig in PP carbon was 0.681 ± 0.013, with an error of 6.81 ± 0.013 % between predicted and actual values. The physicochemical studies, including FESEM-EDX, XRD, and Raman spectroscopy, confirmed the successful synthesis of APC samples. The APC 800 material exhibited a well-organized three-dimensional structure characterized by large pores and mesopores, enabling fast ion transport in the electrode. As a result, the APC 800 electrode demonstrated an initial discharge capacity of 381.0 mAh/g, an improved initial coulombic efficiency of 85.1%, and excellent cycling stability after 100 cycles. Notably, the APC 800 electrode displayed remarkable rate performance, showing a reversible capacity of 355.1 mAh/g when the current density was reset to 0.2 A/g, highlighting its high electrochemical reversibility. The outstanding characteristics of APC 800 as an anode electrode material for high-performance lithium-ion batteries suggest a promising future for its application in the field.
  16. Saminathan M, Fuat MA, Mohamed WNW, Noh 'M, Ibrahim NA
    Trop Anim Health Prod, 2024 Oct 02;56(8):312.
    PMID: 39354119 DOI: 10.1007/s11250-024-04105-9
    This study aimed to evaluate the effects of substituting a crude palm oil (CPO) diet with palm-pressed fibre oil (PPFO) on laying hens' performance, egg production, carcass characteristic and egg quality. A total of 150 Hisex Brown laying hens were randomly assigned to five treatments: a basal diet containing 4% CPO (T1-control) and basal diets in which CPO was substituted by 25% (T2), 50% (T3), 75% (T4) or 100% (T5) PPFO. These diets were fed to laying hens ad libitum for 16 weeks. Compared to the T1 diet, dietary treatments T2, T3 and T4 had no significant effect (P > 0.05) on the feed intake, body weight gain, feed conversion ratio, egg number, egg production, egg weight and egg mass of the laying hens during the entire experimental period. Nonetheless, a significant (P 
  17. Ibrahim NA, Alimon AR, Yaakub H, Samsudin AA, Candyrine SCL, Wan Mohamed WN, et al.
    Trop Anim Health Prod, 2021 Jul 31;53(4):422.
    PMID: 34331142 DOI: 10.1007/s11250-021-02863-4
    Understanding the nature of ruminant nutrition and digestion is essential to improve feeding management and animal production. Among many approaches, manipulating ruminant nutrition and fermentation through feed supplementation is being practised and researched. Over the last decade, the utilization of vegetable oils in feed formulation and their effects on various aspects of ruminants have been reported by many researchers. It is important to understand the lipid metabolism in ruminants by microorganisms because it affects the quality of ruminant-derived products such as meat and milk. Majority of vegetable oil supplementation could reduce rumen protozoa population in ruminants due to the effects of medium-chain fatty acids (FAs). However, vegetable oil also contains unsaturated FAs that are known to have a negative effect on cellulolytic bacteria which could show inhibitory effects of the fibre digestion. In this paper, the physiology of nutrient digestion of ruminants is described. This paper also provides a current review of studies done on improvement and modification of rumen fermentation and microbial population through vegetable oil supplementation.
  18. Mazlan MKN, Mohd Tazizi MHD, Ahmad R, Noh MAA, Bakhtiar A, Wahab HA, et al.
    Antibiotics (Basel), 2021 Jul 25;10(8).
    PMID: 34438958 DOI: 10.3390/antibiotics10080908
    Mycobacterium tuberculosis (Mtb) is the microorganism that causes tuberculosis. This infectious disease has been around for centuries, with the earliest record of Mtb around three million years ago. The discovery of the antituberculosis agents in the 20th century has managed to improve the recovery rate and reduce the death rate tremendously. However, the conventional antituberculosis therapy is complicated by the development of resistant strains and adverse drug reactions experienced by the patients. Research has been conducted continuously to discover new, safe, and effective antituberculosis drugs. In the last 50 years, only two molecules were approved despite laborious work and costly research. The repurposing of drugs is also being done with few drugs; antibiotics, particularly, were found to have antituberculosis activity. Besides the discovery work, enhancing the delivery of currently available antituberculosis drugs is also being researched. Targeted drug delivery may be a potentially useful approach to be developed into clinically accepted treatment modalities. Active targeting utilizes a specifically designed targeting agent to deliver a chemically conjugated drug(s) towards Mtb. Passive targeting is very widely explored, with the development of multiple types of nanoparticles from organic and inorganic materials. The nanoparticles will be engulfed by macrophages and this will eliminate the Mtb that is present in the macrophages, or the encapsulated drug may be released at the sites of infections that may be in the form of intra- and extrapulmonary tuberculosis. This article provided an overview on the history of tuberculosis and the currently available treatment options, followed by discussions on the discovery of new antituberculosis drugs and active and passive targeting approaches against Mycobacterium tuberculosis.
  19. Koh CT, Ghazi HF, Ahmad MI, Abdul Samad N, Lai KEY, Ismail NF, et al.
    Health Serv Res Manag Epidemiol, 2016 May 5;3:2333392816643720.
    PMID: 28462275 DOI: 10.1177/2333392816643720
    OBJECTIVES: To assess the knowledge, attitude, and practice of parents regarding antibiotic usage for treating upper respiratory tract infection (URTI) among children.
    METHODS: A cross-sectional study was conducted among 320 randomly selected parents attending a primary health clinic using self-administered questionnaires.
    RESULTS: About two-thirds (69.1%) of the parents had poor knowledge level. Only 25.2% and 21.6% of the parents could correctly identify amoxicillin and penicillin as the treatment of children's URTI. However, about two-thirds (67.5%) of the parents were aware of the antibiotic resistance caused by overuse of antibiotics. A significant association was noted between the father's and mother's educational level and family income with the knowledge level. Only mother's educational level depicted a significant association with the attitude.
    CONCLUSION: The knowledge of parents regarding antibiotic usage for URTI was poor. More numbers of health promotions and educational campaigns are required to help parents understand about antibiotic usage.
    Study site: Primary care clinic, Bandar Tasik Selatan, Kuala Lumpur, Malaysia
  20. Mookiah S, Wan Mohamed WN, Md Noh ', Ibrahim NA, Fuat MA, Ramiah SK, et al.
    PMID: 32898954 DOI: 10.5713/ajas.20.0360
    Ahead of Print article withdrawn by publisher.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links