Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Ng SL, Seng CE, Lim PE
    Chemosphere, 2009 Jun;75(10):1392-400.
    PMID: 19307013 DOI: 10.1016/j.chemosphere.2009.02.049
    The bioregeneration efficiencies of powdered activated carbon (PAC) and pyrolyzed rice husk loaded with phenol and p-nitrophenol were quantified by oxygen uptake measurements using the respirometry technique in two approaches: (i) simultaneous adsorption and biodegradation and (ii) sequential adsorption and biodegradation. It was found that the applicability of the simultaneous adsorption and biodegradation approach was constrained by the requirement of adsorption preceding biodegradation in order to determine the initial adsorbent loading accurately. The sequential adsorption and biodegradation approach provides a good estimate of the upper limit of the bioregeneration efficiency for the loaded adsorbent in the simultaneous adsorption and biodegradation processes. The results showed that the mean bioregeneration efficiencies for PAC loaded with phenol and p-nitrophenol, respectively, obtained using the two approaches were in good agreement.
  2. Ng SL, Seng CE, Lim PE
    Chemosphere, 2010 Jan;78(5):510-6.
    PMID: 20035966 DOI: 10.1016/j.chemosphere.2009.11.041
    A kinetic model consisting of first-order desorption and biodegradation processes was developed to describe the bioregeneration of phenol- and p-nitrophenol-loaded powdered activated carbon (PAC) and pyrolyzed rice husk (PRH), respectively. Different dosages of PAC and PRH were loaded with phenol or p-nitrophenol by contacting with the respective phenolic compound at various concentrations. The kinetic model was used to fit the phenol or p-nitrophenol concentration data in the bulk solution during the bioregeneration process to determine the rate constants of desorption, k(d), and biodegradation, k. The results showed that the kinetic model fitted relatively well (R(2)>0.9) to the experimental data for the phenol- and p-nitrophenol-loaded PAC as well as p-nitrophenol-loaded PRH. Comparison of the values of k(d) and k shows that k is much greater than k(d). This indicates clearly that the desorption process is the rate-determining step in bioregeneration and k(d) can be used to characterize the rate of bioregeneration. The trend of the variation of the k(d) values with the dosages of PAC or PRH used suggests that higher rate of bioregeneration can be achieved under non-excess adsorbent dosage condition.
  3. Khosravi Y, Vellasamy KM, Mariappan V, Ng SL, Vadivelu J
    ScientificWorldJournal, 2014;2014:132971.
    PMID: 25379514 DOI: 10.1155/2014/132971
    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ), the synthetic β-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s) in a timely manner. In this study, susceptibilities of 81 B. pseudomallei isolates to nine different antimicrobial agents were determined using the disk diffusion method, broth microdilution test and Etest. Highest percentage of susceptibility was demonstrated to CAZ, amoxicillin/clavulanic acid, meropenem, imipenem, and trimethoprim/sulfamethoxazole. Although these drugs demonstrated the highest percentage of susceptibility in B. pseudomallei, the overall results underline the importance of the emergence of resistance in this organism. PCR results showed that, of the 81 B. pseudomallei, six multidrug resistant (MDR) isolates carried bpeB, amrB, and BPSS1119 and penA genes. Genotyping of the isolates using random amplified polymorphic DNA analysis showed six different PCR fingerprinting patterns generated from the six MDR isolates clusters (A) and eight PCR fingerprinting patterns generated for the remaining 75 non-MDR isolates clusters (B).
  4. Khor SM, Ng SL, Lim PE, Seng CE
    Environ Technol, 2011 Dec;33(15-16):1903-14.
    PMID: 22439579
    The objective of this study was to evaluate the effects ofNi(II) and Cr(VI) individually and in combination on the simultaneous removal of chemical oxygen demand (COD), nitrogen and metals under a sequencing batch reactor (SBR) operation. Three identical laboratory-scale SBRs were operated with FILL, REACT, SETTLE, DRAW and IDLE periods in a ratio of 1:12:1:2:8 for a cycle time of 24 h until the steady state was achieved. Nickel(II) at increasing concentrations up to 35 mg/L was added to one of the reactors; Cr(VI) at increasing concentrations up to 25 mg/L was added to a second reactor; while a combination of Ni(II) and Cr(VI) in equal concentrations up to 10 mg/L was added to a third reactor. The results demonstrate that both Ni(II) and Cr(VI) exerted a more pronounced inhibitory effect on the removal of ammonia nitrogen (AN) than on COD removal. Synergistic and antagonistic inhibitory effects on the rates of COD and AN removal, respectively, were observed for the 50% Ni(II) and 50% Cr(VI) (w/w) mixture in the concentration range between 10 and 20 mg/L. The simultaneous presence of 50% Ni(II) and 50% Cr(VI) at a concentration of 20 mg/L resulted in system failure.
  5. Chen SH, Ng SL, Cheow YL, Ting ASY
    J Hazard Mater, 2017 Jul 15;334:132-141.
    PMID: 28407540 DOI: 10.1016/j.jhazmat.2017.04.004
    Four fungal isolates: Simplicillium chinense (iso 9, accession no. KX425621), Penicillium simplicissimum (iso 10, KP713758), Trichoderma asperellum (iso 11, KP792512), and Coriolopsis sp. (1c3, KM403574) were subjected to a series of induced-tolerance training under high metal concentrations to determine if greater tolerance could be achieved from constant exposure to such conditions. Adaptive tolerance assay (Tolerance Index, TI) and Field-Emission Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) characterized their metal tolerance. "Untrained" S. chinense, P. simplicissimum and T. asperellum showed tolerance towards 4000-4500ppm Al(III) (TI: 0.64-0.71), 1000ppm Cr(III) (0.52-0.83) and Pb(II) (0.32-0.88). With tolerance training, tolerance towards 2000-6000ppm Al(III), 500-3000ppm Pb(II) and 2000-3000ppm Cr(III) were achieved (TI: 0.01-0.82) compared to untrained cultures (0.00-0.59). In contrast, tolerance training for Coriolopsis sp. and P. simplicissimum was less successful, with TI values similar or lower than untrained cultures. SEM-EDX analysis proposed biosorption and bioaccumulation as mechanisms for metal removal. The latter was demonstrated with the removal of Cr(III) and Pb(II) by S. chinense (12.37 and 11.52mgg-1, respectively) and T. asperellum (10.44 and 7.50mgg-1). Induced-tolerance training may render benefit in the long run, but this delicate approach is suggestively species and metal dependent.
  6. Chen SH, Cheow YL, Ng SL, Ting ASY
    J Hazard Mater, 2019 01 15;362:394-402.
    PMID: 30248661 DOI: 10.1016/j.jhazmat.2018.08.077
    Penicillium simplicissimum (isolate 10), a metal tolerant fungus, tolerated 1000 mg/L Cu and 500 mg/L Zn, but were inhibited by Cd (100 mg/L), evident by the Tolerance Index (TI) of 0.88, 0.83, and 0.08, respectively. Live cells of P. simplicissimum were more effective in removing Cr (88.6%), Pb (73.7%), Cu (63.8%), Cd (33.1%), and Zn (28.3%) than dead cells (5.3-61.7%). Microscopy approach via SEM-EDX and TEM-EDX suggested that metal removal involved biosorption and bioaccumulation, with metal precipitates detected on the cell wall, and in the cytoplasm and vacuoles. FTIR analysis revealed metals interacted with amino, carbonyl, hydroxyl, phosphoryl (except Cd) and nitro groups in the cell wall. Biosorption and bioaccumulation of metals by live cells reduced Cu and Pb toxicity, observed from good root and (4.00-4.28 cm) and shoot (8.07-8.36 cm) growth of Vigna radiata in the phytotoxicity assay.
  7. Chang JY, Syauqi TA, Sudesh K, Ng SL
    Bioresour Technol, 2024 Feb;393:130054.
    PMID: 37995876 DOI: 10.1016/j.biortech.2023.130054
    Polyhydroxyalkanoates (PHAs) are promising alternatives to non-degradable polymers in various applications. This study explored the use of biologically recovered PHA as a biofilm carrier in a moving bed biofilm reactor for acid orange 7 treatment. The PHA was comprised of 86 ± 1 mol% of 3-hydroxybutyrate and 14 ± 1 mol% of 3-hydroxyhexanoate and was melt-fused at 140 °C into pellets. The net positive surface charge of the PHA biocarrier facilitated attachment of negatively charged activated sludge, promoting biofilm formation. A 236-µm mature biofilm developed after 26 days. The high polysaccharides-to-protein ratio (>1) in the biofilm's extracellular polymeric substances indicated a stable biofilm structure. Four main microbial strains in the biofilm were identified as Leclercia adecarboxylata, Leuconostoc citreum, Bacillus cereus, and Rhodotorula mucilaginosa, all of which exhibited decolourization abilities. In conclusion, PHA holds promise as an effective biocarrier for biofilm development, offering a sustainable alternative in wastewater treatment applications.
  8. Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX
    Int J Mol Sci, 2024 Mar 07;25(6).
    PMID: 38542054 DOI: 10.3390/ijms25063080
    This paper sheds light on the alarming issue of antibiotic resistance (ABR) in aquatic environments, exploring its detrimental effects on ecosystems and public health. It examines the multifaceted role of antibiotic use in aquaculture, agricultural runoff, and industrial waste in fostering the development and dissemination of resistant bacteria. The intricate interplay between various environmental factors, horizontal gene transfer, and bacterial extracellular vesicles (BEVs) in accelerating the spread of ABR is comprehensively discussed. Various BEVs carrying resistance genes like blaCTX-M, tetA, floR, and sul/I, as well as their contribution to the dominance of multidrug-resistant bacteria, are highlighted. The potential of BEVs as both a threat and a tool in combating ABR is explored, with promising strategies like targeted antimicrobial delivery systems and probiotic-derived EVs holding significant promise. This paper underscores the urgency of understanding the intricate interplay between BEVs and ABR in aquatic environments. By unraveling these unseen weapons, we pave the way for developing effective strategies to mitigate the spread of ABR, advocating for a multidisciplinary approach that includes stringent regulations, enhanced wastewater treatment, and the adoption of sustainable practices in aquaculture.
  9. Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX
    Int J Mol Sci, 2024 Apr 04;25(7).
    PMID: 38612834 DOI: 10.3390/ijms25074024
    The animal gut microbiota, comprising a diverse array of microorganisms, plays a pivotal role in shaping host health and physiology. This review explores the intricate dynamics of the gut microbiome in animals, focusing on its composition, function, and impact on host-microbe interactions. The composition of the intestinal microbiota in animals is influenced by the host ecology, including factors such as temperature, pH, oxygen levels, and nutrient availability, as well as genetic makeup, diet, habitat, stressors, and husbandry practices. Dysbiosis can lead to various gastrointestinal and immune-related issues in animals, impacting overall health and productivity. Extracellular vesicles (EVs), particularly exosomes derived from gut microbiota, play a crucial role in intercellular communication, influencing host health by transporting bioactive molecules across barriers like the intestinal and brain barriers. Dysregulation of the gut-brain axis has implications for various disorders in animals, highlighting the potential role of microbiota-derived EVs in disease progression. Therapeutic approaches to modulate gut microbiota, such as probiotics, prebiotics, microbial transplants, and phage therapy, offer promising strategies for enhancing animal health and performance. Studies investigating the effects of phage therapy on gut microbiota composition have shown promising results, with potential implications for improving animal health and food safety in poultry production systems. Understanding the complex interactions between host ecology, gut microbiota, and EVs provides valuable insights into the mechanisms underlying host-microbe interactions and their impact on animal health and productivity. Further research in this field is essential for developing effective therapeutic interventions and management strategies to promote gut health and overall well-being in animals.
  10. Lim JW, Seng CE, Lim PE, Ng SL, Sujari AN
    Bioresour Technol, 2011 Nov;102(21):9876-83.
    PMID: 21890353 DOI: 10.1016/j.biortech.2011.08.014
    The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal.
  11. Fatimah SS, Ng SL, Chua KH, Hayati AR, Tan AE, Tan GC
    Hum. Cell, 2010 Nov;23(4):141-51.
    PMID: 21166885 DOI: 10.1111/j.1749-0774.2010.00096.x
    Human amniotic epithelial cells (hAECs) are potentially one of the key players in tissue engineering due to their easy availability. The aim of the present study was to develop an optimal isolation and transportation technique, as well as to determine the immunophenotype and epithelial gene expression of hAECs. Amnion was mechanically peeled off from the chorion and digested with trypsin-ethylenediaminetetraacetic acid. The isolated hAECs were cultured in medium containing 10 ng/mL epidermal growth factor until P4. The epithelial gene expression, cell surface antigen and protein expression of hAECs were analyzed by quantitative polymerase chain reaction, flow cytometry and immunocytochemistry. hAECs were also cultured in adipogenic, osteogenic and neurogenic induction media. The best cell yield of hAECs was seen in the digestion of 15 pieces of amnion (2 × 2 cm) and isolated 30 min after digestion with trypsin. F12:Dulbecco's modified eagle medium was the best medium for short term storage at 4 °C. hAECs expressed CD9, CD44, CD73 and CD90, and negligibly expressed CD31, CD34, CD45 and CD117. After serial passage, CK3, CK19 and involucrin gene expressions were upregulated, while p63, CK1 and CK14 gene expressions were downregulated. Sustained gene expressions of integrin β1 and CK18 were observed. At initial culture, these cells might have stem-like properties. However, they differentiated after serial passage. Nonetheless, hAECs have epithelial stem cell characteristics and have the potential to differentiate into corneal epithelial cells. Further investigations are still needed to elucidate the mechanism of differentiation involved and to optimize the culture condition for long term in vitro culture.
  12. Jamil K, Chua KH, Joudi S, Ng SL, Yahaya NH
    J Orthop Surg Res, 2015;10:27.
    PMID: 25889942 DOI: 10.1186/s13018-015-0166-z
    Functional tissue engineering has emerged as a potential means for treatment of cartilage defect. Development of a stable cartilage composite is considered to be a good option. The aim of the study was to observe whether the incorporation of cultured chondrocytes on porous tantalum utilizing fibrin as a cell carrier would promote cartilage tissue formation.
  13. Azmi MF, Abd Ghafar N, Che Hamzah J, Chua KH, Ng SL
    J Food Biochem, 2021 04;45(4):e13645.
    PMID: 33569805 DOI: 10.1111/jfbc.13645
    This study aimed to investigate the role of Gelam honey (GH) in accelerating reepithelialization of corneal abrasion. Corneal epithelial cells (CEC) isolated from New Zealand white rabbit corneas, were cultured and circular-shaped wounds were created onto them, representing the corneal abrasion model. These wounds were treated with basal (BM) and cornea media (CM) supplemented with GH. The percentage of wound closure was measured on day 0, 3, and 5. Expressions of cytokeratin 3 (CK3), cluster of differentiation 44 (CD 44), and connexin 43 (Cx43) were analyzed via qRT-PCR and immunocytochemistry. The results showed CEC cultured in GH-enriched media reepithelialized faster compared to control. Corneal abrasion treated with CM supplemented with GH closed completely on day 5. CK3, CD44, and Cx43 expressions correspond to the stages of reepithelialization. In conclusion, GH promotes the healing of the ex vivo corneal abrasion model. Further explorations of its potential as adjuvant therapy in treating corneal injuries are needed. PRACTICAL APPLICATIONS: Honey has been reported to have many medicinal properties including antibacterial, anti-inflammatory, and the ability to promote skin wound healing. However, the effects of honey on corneal wound healing have not been fully elucidated. In the present study, we aimed to determine the effects of Gelam honey (GH), well-known local honey obtained from the beehive of Gelam trees (Melaleuca spp.), on the ex vivo corneal abrasion model via cell migration study and analysis of genes and proteins during corneal epithelial wound healing. GH has proven to have accelerated effects on the corneal epithelial cell migration during the closure of the ex vivo corneal abrasion wound model. The expressions of the genes and proteins of the corneal epithelial wound healing markers were in accordance with the stages of healing. Therefore, GH has the potential to be developed as adjuvant therapy in the form of GH-based eye drop in treating corneal injuries.
  14. Ng SL, Nordin A, Abd Ghafar N, Suboh Y, Ab Rahim N, Chua KH
    Parasit Vectors, 2017 12 28;10(1):625.
    PMID: 29282148 DOI: 10.1186/s13071-017-2547-0
    BACKGROUND: In recent years, the concern of Acanthamoeba keratitis has increased since the infection is often associated with contact lens use. Partial 18S rRNA genotypic identification of Acanthamoeba isolates is important to correlate with pathophysiological properties in order to evaluate the degree of virulence. This is the first report of genotypic identification for clinical isolates of Acanthamoeba from corneal scrapings of keratitis in Malaysia. This study is also the first to correlate the mRNA expression of MBP and AhLBP as virulent markers for axenic strains of Acanthamoeba.

    RESULTS: In this study, ten clinical isolates were obtained from corneal scrapings. Rns genotype and intra-genotypic variation at the DF3 region of the isolates were identified. Results revealed that all clinical isolates belonged to the T4 genotype, with T4/6 (4 isolates), T4/2 (3 isolates), T4/16 (2 isolates) and one new genotype T4 sequence (T4/36), being determined. The axenic clinical isolates were cytopathogenic to rabbit corneal fibroblasts. MBP and AhLBP mRNA expression are directly correlated to Acanthamoeba cytopathic effect.

    CONCLUSIONS: All ten Malaysian clinical isolates were identified as genotype T4 which is predominantly associated with AK. Measuring the mRNA expression of Acanthamoeba virulent markers could be useful in the understanding of the pathogenesis of Acanthamoeba keratitis.

  15. Leong KY, Adnan R, Lim PE, Ng SL, Seng CE
    Environ Sci Pollut Res Int, 2017 Sep;24(26):20959-20971.
    PMID: 28726220 DOI: 10.1007/s11356-017-9636-7
    The effects of dry biomass density in cryogel beads, shaking speed and initial concentration ratio of phenol to 4-chlorophenol (4-CP) on the bioregeneration efficiencies of binary phenol and 4-CP-loaded granular activated carbon (GAC) for phenol and 4-CP, respectively, were investigated under the simultaneous adsorption and biodegradation approach. The results revealed higher bioregeneration efficiencies of binary-loaded GAC for phenol and 4-CP at higher dry biomass density but moderate shaking speed. The optimum dry biomass density in cryogel beads and shaking speed for use in bioregeneration were found to be 0.01 g/mL and 250 rpm, respectively. With respect to the initial phenol to 4-CP concentration ratio, the bioregeneration efficiencies were lower under increasing phenol and 4-CP initial concentrations, respectively, with the effect being more conspicuous under increasing 4-CP concentration. Higher bioregeneration efficiencies were achieved with the use of immobilized rather than suspended biomasses.
  16. Md Yusof A, Abd Ghafar N, Kamarudin TA, Chua KH, Azmi MF, Ng SL, et al.
    Cytotechnology, 2019 Dec;71(6):1121-1135.
    PMID: 31606844 DOI: 10.1007/s10616-019-00349-8
    This study evaluated the effects of Gelam honey (GH) on ex vivo corneal fibroblast ulcer model via wound healing assay, gene expression and immunocytochemistry. Corneal fibroblasts from New Zealand white rabbits were culture expanded. The corneal fibroblast wound healing capacity was observed by creating a circular wound onto confluent monolayer cells cultured in basal medium (BM), BM with GH, serum-enriched basal medium (BMS) and BMS with GH respectively. Wound healing assay and phenotypic characterization of the corneal fibroblast were performed at different stages of wound closure. Expression of aldehyde dehydrogenase (ALDH), vimentin, α-smooth muscle actin (α-SMA), lumican, collagen I and matrix metalloproteinase 12 (MMP 12) were measured at day 1, day 3 and complete wound closure day. Corneal fibroblast cultured in BMS with GH demonstrated the fastest wound closure, at day 5 post wounding. The gene expressions of ALDH and vimentin were higher than control groups while α-SMA expression was lower, in GH enriched media. The expressions of lumican, collagen I and MMP 12 were also higher in cells cultured in GH enriched media compared to the control groups. GH was shown to promote in vitro corneal fibroblast wound healing and may be a potential natural adjunct in the treatment of corneal wound.
  17. Sugawara D, Chishima Y, Kubo T, Shah RIABRR, Phoo EYM, Ng SL, et al.
    J Affect Disord, 2022 Aug 15;311:500-507.
    PMID: 35561884 DOI: 10.1016/j.jad.2022.05.032
    BACKGROUND: The current study examined how psychological resilience acted as a buffer against mental health deterioration during the coronavirus disease 2019 (COVID-19) pandemic. We conducted an online survey in four countries (Japan, Malaysia, China, and the U.S.) to examine how psychological resilience functions toward the maintenance of mental health during the COVID-19 pandemic.

    METHODS: We collected data from 1583 citizens from four countries via an online survey between October 14 and November 2, 2020. We gathered demographic data and measured mental distress (depression, anxiety, and stress) and fear of COVID-19. Data on sense of control, ego-resilience, grit, self-compassion, and resilience indicators were also collected.

    RESULTS: Sense of control was negatively associated with mental distress in all four countries. Self-compassion was negatively associated with mental distress in the samples from Japan, China, and the U.S. We also found an interaction effect for sense of control: the lower the sense of control, the stronger the deterioration of mental distress when the fear of COVID-19 was high.

    LIMITATIONS: This study's cross-sectional design precludes causal inferences. Further, lack of data from people who were actually infected with the virus limits comparisons of people who were and were not infected. Finally, as this study only compared data from four countries, comparisons with more countries are needed.

    CONCLUSIONS: A sense of control and self-compassion may help buffer against mental health deterioration during the COVID-19 pandemic. Sense of control was consistently associated with mental health across cultures.

  18. Ng SL, Ong YS, Khaw KY, Teh SP, Tan CS, Ming LC, et al.
    Medicina (Kaunas), 2021 Feb 23;57(2).
    PMID: 33672384 DOI: 10.3390/medicina57020189
    The global pandemic of the coronavirus disease 2019 is a known consequence of infection of severe respiratory syndrome coronavirus-2 (SARS-CoV-2). It has affected nations worldwide with soaring number of cases daily. Symptoms such as fever, cough, and shortness of breath, diarrhea, nausea and vomiting are commonly presented in COVID-19 patients. This focused review aims to discuss these uncommon and atypical COVID-19 symptoms that may be presented which might affect neurological, cardiovascular, cutaneous and ocular systems and their possible mode of actions. Nonetheless, there are some cases of reported uncommon or atypical symptoms which may warrant healthcare professionals to be aware of, especially when in contact with patients. The knowledge and information concerning these symptoms might be able to provide additional cues for healthcare professional by subjecting patients to COVID-19 screening. Meanwhile, it might be able to further enhance the alertness and additional precautions being taken by healthcare personnel, which eventually lead to reduced risk of infections.
  19. Ng SL, Khaw KY, Ong YS, Goh HP, Kifli N, Teh SP, et al.
    J Evid Based Integr Med, 2021;26:2515690X21996662.
    PMID: 33787349 DOI: 10.1177/2515690X21996662
    The management of the global pandemic outbreak due to the coronavirus disease (COVID-19) has been challenging with no exact dedicated treatment nor established vaccines at the beginning of the pandemic. Nonetheless, the situation seems to be better controlled with the recent COVID-19 vaccines roll-out globally as active immunisation to prevent COVID-19. The extensive usage and trials done in recent outbreak in China has shown the effectiveness of traditional Chinese Medicines (TCM) in improving the wellbeing of COVID-19 patients. Therefore, COVID-19 Prevention and Treatment guidelines has listed a number of recommended concoctions meant for COVID-19 patients. Licorice, more commonly known as Gancao in Chinese Pinyin, is known as one of the most frequently used ingredients in TCM prescriptions for treatment of epidemic diseases. Interestingly, it is deemed as food ingredient as well, where it is normally used in Western cuisines' desserts and sweets. The surprising fact that licorice appeared in the top 10 main ingredients used in TCM prescriptions in COVID-19 has drawn great attention from researchers in revealing its biological potential in overcoming this disease. To date, there are no comprehensive review on licorice and its benefits when used in COVID-19. Thus, in this current review, the possible benefits, mechanism of actions, safety and limitations of licorice were explored in hope to provide a quick reference guide for its preclinical and clinical experimental set-up in this very critical moment of pandemic.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links