Displaying all 13 publications

Abstract:
Sort:
  1. Shirbhate E, Pandey J, Patel VK, Veerasamy R, Rajak H
    Turk J Pharm Sci, 2023 Aug 22;20(4):270-284.
    PMID: 37606012 DOI: 10.4274/tjps.galenos.2022.12269
    The present study aimed to establish significant and validated quantitative structure-activity relationship (QSAR) models for histone deacetylase (HDAC) inhibitors and correlate their physicochemical, steric, and electrostatic properties with their anticancer activity. We have selected a dataset from earlier research findings. The target and ligand molecules were procured from recognized databases and incorporated into pivotal findings such as molecular docking (XP glide), e-pharmacophore study and 3D QSAR model designing study (phase). Docking revealed molecule 39 with better docking score and well binding contact with the protein. 3D QSAR analysis, which was performed for partial least squares factor 5 reported good 0.9877 and 0.7142 as R2 and Q2 values and low standard of deviation: 0.1049 for hypothesis AADRR.139. Based on the computational outcome, it has been concluded that molecule 39 is an effective and relevant candidate for inhibition of HDAC activity. Moreover, these computational approaches motivate to discover novel drug candidates in pharmacological and healthcare sectors.
  2. Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Sinha BN, et al.
    Mini Rev Med Chem, 2021;21(8):1004-1016.
    PMID: 33280595 DOI: 10.2174/1389557520666201204162103
    The novel coronavirus disease-19 (COVID-19) is a global pandemic that emerged from Wuhan, China, and has spread all around the world, affecting 216 countries or territories with 21,732,472 people infected and 770,866 deaths globally (as per WHO COVID-19 updates of August 18, 2020). Continuous efforts are being made to repurpose the existing drugs and develop vaccines for combating this infection. Despite, to date, no certified antiviral treatment or vaccine exists. Although, few candidates have displayed their efficacy in in vitro studies and are being repurposed for COVID- 19 treatment. This article summarizes synthetic and semi-synthetic compounds displaying potent activity in clinical uses or studies on COVID-19 and also focuses on the mode of action of drugs being repositioned against COVID-19.
  3. Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Rajak H
    Future Oncol, 2020 Oct;16(30):2457-2469.
    PMID: 32815411 DOI: 10.2217/fon-2020-0385
    HDAC inhibitors (HDACi) play an essential role in various cellular processes, such as differentiation and transcriptional regulation of key genes and cytostatic factors, cell cycle arrest and apoptosis that facilitates the targeting of epigenome of eukaryotic cells. In the majority of cancers, only a handful of patients receive optimal benefit from chemotherapeutics. Additionally, there is emerging interest in the use of HDACi to modulate the effects of ionizing radiations. The use of HDACi with radiotherapy, with the goal of reaching dissimilar, often distinct pathways or multiple biological targets, with the expectation of synergistic effects, reduced toxicity and diminished intrinsic and acquired resistance, conveys an approach of increasing interest. In this review, the clinical potential of HDACi in combination with radiotherapy is described as an efficient synergy for cancer treatment will be overviewed.
  4. Singh A, Patel P, Patel VK, Jain DK, Veerasamy R, Sharma PC, et al.
    Curr Cancer Drug Targets, 2017;17(5):456-466.
    PMID: 28067178 DOI: 10.2174/1568009617666170109150134
    BACKGROUND: Colorectal cancer is a devastating disease with a dismal prognosis which is heavily hampered by delayed diagnosis. Surgical resection, radiation therapy and chemotherapy are the curative options. Due to few therapeutic treatments available i.e., mono and combination therapy and development of resistance towards drug response, novel and efficacious therapy are urgently needed.

    OBJECTIVE: In this study, we have studied the potential of histone deacetylase inhibitors in colorectal cancer.

    RESULTS: Histone deacetylase inhibitors (HDACIs) are an emerging class of therapeutic agents having potential anticancer activity with minimal toxicity for different types of malignancies in preclinical studies. HDACIs have proven less effective in monotherapy thus the combination of HDACIs with other anticancer agents are being assessed for the treatment of colorectal cancer.

    CONCLUSION: The molecular mechanism emphasizing the anticancer effect of HDACIs in colorectal cancer was illustrated and a recapitulation was carried out on the recent advances in the rationale behind combination therapies currently underway in clinical evaluations.

  5. Shirbhate E, Patel VK, Tiwari P, Kore R, Veerasamy R, Mishra A, et al.
    Curr Top Med Chem, 2022;22(22):1849-1867.
    PMID: 36082857 DOI: 10.2174/1568026622666220907114443
    BACKGROUND: The management of Alzheimer's disease is challenging due to its complexity. However, the currently approved and marketed treatments for this neurodegenerative disorder revolves around cholinesterase inhibitors, glutamate regulators, or the combination of these agents. Despite the prompt assurance of many new drugs, several agents were unsuccessful, especially in phase II or III trials, not meeting efficacy endpoints.

    OBJECTIVE: The execution of effective treatment approaches through further trials investigating a rational combination of agents is necessitude for Alzheimer's disease.

    METHODS: For this review, more than 248 relevant scientific papers were considered from a variety of databases (Scopus, Web of Science, Google Scholar, ScienceDirect, and PubMed) using the keywords Alzheimer's disease, amyloid-β, combination therapies, cholinesterase inhibitors, dementia, glutamate regulators, AD hypothesis.

    RESULT AND DISCUSSION: The researcher's intent is to either develop a disease-modifying therapeutic means for aiming in the early phases of dementia and/or optimize the available symptomatic treatments principally committed to the more advanced stages of Alzheimer's. Since Alzheimer's possesses multifactorial pathogenesis, designing a multimodal therapeutic intervention for targeting different pathological processes of dementia may appear to be the most practical method to alter the course of disease progression.

    CONCLUSION: The combination approach may even allow for providing individual agents in lower doses, with reducible costs and side effects. Numerous studies on combination therapy predicted better clinical efficacy than monotherapy. The literature review highlights the major clinical studies (both symptomatic and disease-modifying) conducted in the past decade on combination therapy to combat cognitive disorder.

  6. Patel VK, Shirbhate E, Tiwari P, Kore R, Veerasamy R, Mishra A, et al.
    Curr Med Chem, 2023;30(24):2762-2795.
    PMID: 36154583 DOI: 10.2174/0929867329666220922105615
    Multi-targeted agents can interact with multiple targets sequentially, resulting in synergistic and more effective therapies for several complicated disorders, including cancer, even with relatively modest activity. Histone deacetylase (HDAC) inhibitors are low molecular weight small compounds that increase the acetylation of histone and nonhistone proteins, altering gene expression and thereby impacting angiogenesis, metastasis, and apoptosis, among other processes. The HDAC inhibitors affect multiple cellular pathways thus producing adverse issues, causing therapeutic resistance, and they have poor pharmacokinetic properties. The designing of HDAC-based dual/multi-target inhibitor is an important strategy to overcome adverse effects, drug resistance and increase the effectiveness in controlling cancer. The selection of target combinations to design multitarget HDAC inhibitor is generally accomplished on the basis of systematic highthroughput screening (HTS), network pharmacology analysis methods. The identification of the pharmacophore against individual targets is performed using rational or computation methods. The identified pharmacophore can combine with merged, fused, or linked with the cleavable or non-cleavable linker to retain the interaction with the original target while being compatible with the other target. The objective of this review is to elucidate the potential targets' design strategies, biological activity, and the recent development of dual/multi-targeting HDAC inhibitors as potential anticancer agents. This review elucidates the designing strategies of the potential target along with biological activity and the recent development of dual/multi-targeting HDAC inhibitors as potential anticancer agents. The development of HDAC-based dual/multi-target inhibitors is important for overcoming side effects, drug resistance, and effective cancer control.
  7. Patel VK, Shirbhate E, Patel P, Veerasamy R, Sharma PC, Rajak H
    PMID: 34751250 DOI: 10.1186/s43088-021-00165-0
    Background: The World Health Organization (WHO) announced the COVID-19 occurrence as a global pandemic in March 2020. The treatment of SARS-CoV-2 patients is based on the experience gained from SARS-CoV and MERS-CoV infection during 2003. There is no clinically accepted therapeutic drug(s) accessible yet for the treatment of COVID-19.

    Main body: Corticosteroids, i.e., dexamethasone, methylprednisolone, hydrocortisone and prednisone are used alone or in combination for the treatment of moderate, severe and critically infected COVID-19 patients who are hospitalized and require supplemental oxygen as per current management strategies and guidelines for COVID-19 published by the National Institutes of Health. Corticosteroids are recorded in the WHO model list of essential medicines and are easily accessible worldwide at a cheaper cost in multiple formulations and various dosage forms. Corticosteroid can be used in all age group of patients, i.e., children, adult, elderly and during pregnancy or breastfeeding women. Corticosteroids have potent anti-inflammatory and immunosuppressive effects in both primary and secondary immune cells, thereby reducing the generation of proinflammatory cytokines and chemokines and lowering the activation of T cells, monocytes and macrophages. The corticosteroids should not be used in the treatment of non-severe COVID-19 patients because corticosteroids suppress the immune response and reduce the symptoms and associated side effects such as slow recovery, bacterial infections, hypokalemia, mucormycosis and finally increase the chances of death.

    Conclusion: Intensive research on corticosteroid therapy in COVID-19 treatment is urgently needed to elucidate their mechanisms and importance in contributing toward successful prevention and treatment approaches. Hence, this review emphasizes on recent advancement on corticosteroid therapy for defining their importance in overcoming SARS-CoV-2 pandemic, their mechanism, efficacy and extent of corticosteroids in the treatment of COVID-19 patients.

  8. Shirbhate E, Pandey J, Patel VK, Kamal M, Jawaid T, Gorain B, et al.
    Pharmacol Rep, 2021 Dec;73(6):1539-1550.
    PMID: 34176080 DOI: 10.1007/s43440-021-00303-6
    Angiotensin-converting enzyme (ACE) and its homologue, ACE2, are commonly allied with hypertension, renin-angiotensin-aldosterone system pathway, and other cardiovascular system disorders. The recent pandemic of COVID-19 has attracted the attention of numerous researchers on ACE2 receptors, where the causative viral particle, SARS-CoV-2, is established to exploit these receptors for permitting their entry into the human cells. Therefore, studies on the molecular origin and pathophysiology of the cell response in correlation to the role of ACE2 receptors to these viruses are bringing novel theories. The varying level of manifestation and importance of ACE proteins, underlying irregularities and disorders, intake of specific medications, and persistence of assured genomic variants at the ACE genes are potential questions raising nowadays while observing the marked alteration in response to the SARS-CoV-2-infected patients. Therefore, the present review has focused on several raised opinions associated with the role of the ACE2 receptor and its impact on COVID-19 pathogenesis.
  9. Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, et al.
    Mitochondrion, 2022 Nov;67:15-37.
    PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003
    Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
  10. Allam VSRR, Paudel KR, Gupta G, Singh SK, Vishwas S, Gulati M, et al.
    Environ Sci Pollut Res Int, 2022 Sep;29(42):62733-62754.
    PMID: 35796922 DOI: 10.1007/s11356-022-21454-w
    Asthma is a chronic inflammatory disease primarily characterized by inflammation and reversible bronchoconstriction. It is currently one of the leading causes of morbidity and mortality in the world. Oxidative stress further complicates the pathology of the disease. The current treatment strategies for asthma mainly involve the use of anti-inflammatory agents and bronchodilators. However, long-term usage of such medications is associated with severe adverse effects and complications. Hence, there is an urgent need to develop newer, novel, and safe treatment modalities for the management of asthma. This has therefore prompted further investigations and detailed research to identify and develop novel therapeutic interventions from potent untapped resources. This review focuses on the significance of oxidative stressors that are primarily derived from both mitochondrial and non-mitochondrial sources in initiating the clinical features of asthma. The review also discusses the biological scavenging system of the body and factors that may lead to its malfunction which could result in altered states. Furthermore, the review provides a detailed insight into the therapeutic role of nutraceuticals as an effective strategy to attenuate the deleterious effects of oxidative stress and may be used in the mitigation of the cardinal features of bronchial asthma.
  11. Paudel KR, Mehta M, Yin GHS, Yen LL, Malyla V, Patel VK, et al.
    Environ Sci Pollut Res Int, 2022 Jul;29(31):46830-46847.
    PMID: 35171422 DOI: 10.1007/s11356-022-19158-2
    Non-small cell lung cancer (NSCLC) is reported to have a high incidence rate and is one of the most prevalent types of cancer contributing towards 85% of all incidences of lung cancer. Berberine is an isoquinoline alkaloid which offers a broad range of therapeutical and pharmacological actions against cancer. However, extremely low water solubility and poor oral bioavailability have largely restricted its therapeutic applications. To overcome these limitations, we formulated berberine-loaded liquid crystalline nanoparticles (LCNs) and investigated their in vitro antiproliferative and antimigratory activity in human lung epithelial cancer cell line (A549). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), trypan blue staining, and colony forming assays were used to evaluate the anti-proliferative activity, while scratch wound healing assay and a modified Boyden chamber assay were carried out to determine the anti-migratory activity. We also investigated major proteins associated with lung cancer progression. The developed nanoparticles were found to have an average particle size of 181.3 nm with spherical shape, high entrapment efficiency (75.35%) and have shown sustained release behaviour. The most remarkable findings reported with berberine-loaded LCNs were significant suppression of proliferation, inhibition of colony formation, inhibition of invasion or migration via epithelial mesenchymal transition, and proliferation related proteins associated with cancer progression. Our findings suggest that anti-cancer compounds with the problem of poor solubility and bioavailability can be overcome by formulating them into nanotechnology-based delivery systems for better efficacy. Further in-depth investigations into anti-cancer mechanistic research will expand and strengthen the current findings of berberine-LCNs as a potential NSCLC treatment option.
  12. Tan CL, Chan Y, Candasamy M, Chellian J, Madheswaran T, Sakthivel LP, et al.
    Eur J Pharmacol, 2022 Feb 11;919:174821.
    PMID: 35151643 DOI: 10.1016/j.ejphar.2022.174821
    Chronic respiratory diseases have collectively become a major public health concern and have now taken form as one of the leading causes of mortality worldwide. Most chronic respiratory diseases primarily occur due to prolonged airway inflammation. In addition, critical environmental factors such as cigarette smoke, industrial pollutants, farm dust, and pollens may also exacerbate such diseases. Moreover, alterations in the genetic sequence of an individual, abnormalities in the chromosomes or immunosuppression resulting from bacterial, fungal, and viral infections may also play a key role in the pathogenesis of respiratory diseases. Over the years, multiple in vitro models have been employed as the basis of existing as well as emerging advancements in chronic respiratory disease research. These include cell lines, gene expression techniques, single cell RNA sequencing, cytometry, culture techniques, as well as serum/sputum biomarkers that can be used to elucidate the molecular mechanisms underlying these diseases, and to identify novel diagnostic and management options for these diseases. This review summarizes the current understanding of the pathogenesis of various chronic respiratory diseases derived through in vitro experimental models, where the knowledge obtained from these studies can greatly benefit researchers in the discovery and development of novel screening techniques and advanced therapeutic strategies that could be translated into clinical use in the future.
  13. De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, et al.
    PMID: 37991539 DOI: 10.1007/s00210-023-02830-w
    Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties. This picture was generated with BioRender.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links