MATERIALS AND METHODS: Saliva was collected from 4- to 6-year-old kindergarten students. Salivary neutrophils were obtained by instructing the subjects to rinse their mouth with 1 mL of sterile 1.5% NaCl for 30 seconds before expectorating it into a sterile glass. The expression of CFSE+CD35+ and CFSE+CD89+was measured and analyzed using flow cytometry.
RESULTS: The expression of CFSE+CD89+ in the caries-free group (2.46 ± 0.39) was significantly lower than that in the S-ECC group (3.41 ± 1.11), with a p-value of 0.0001, while the expression of CFSE+CD35+ in the caries-free group was (2.35 ± 0.56) compared with (1.54 ± 0.35) (p = 0.0001) in the S-ECC group.
CONCLUSIONS: The expression ratio of CFSE+CD89+ and CFSE+CD35+constitutes a marker for S-ECC.
DESIGN: Eighty-one extracted teeth were grouped into two age groups (6-25 years, 26-80 years). The teeth were demineralized and histological sections were prepared for cell count. Regression equations were generated from regression analysis of cell count and tested for age estimation.
RESULTS: The number of dental pulp cells were found to increase until around the third decade of life and following this, the odontoblasts and subodontoblasts cell numbers began to decline while the fibroblasts seemed to remain almost stationary. The Pearson correlation test revealed a significant positive correlation between the cell number for all type of cells and age in the 6-25 years group (r=+0.791 for odontoblasts, r=+0.600 for subodontoblasts and r=+0.680 for fibroblasts). In the 26-80 years age group, a significant negative correlation of the odontoblasts (r=-0.777) and subodontoblasts (r=-0.715) with age was observed but for fibroblasts, the correlation value was negligible (r=-0.165). Regression equations generated using odontoblasts and subodontoblasts cell number were applicable for age estimation. The standard error of estimates (SEEs) were around±5years for 6-25 years and±8years for 26-80 years age groups. The mean values of the estimated and chronological ages were not significantly different.
CONCLUSIONS: A significant correlation between the cell count of odontoblasts and subodontoblasts with age was demonstrated. Regression equations using odontoblasts and subodontoblasts cell number can be used to predict age with some limitations.
METHODS: One hundred and twenty dentine discs were divided into three groups. The discs from each group were brushed with toothpaste containing bioactive glass, arginine and control toothpaste. Each group was then divided into four subgroups and exposed to acidic soft drink over four different time durations.
RESULTS: The scoring and the percentage of occluded dentinal tubules by Novamin-containing toothpaste was significantly better compared with arginine or the control toothpaste. Acidic soft drink challenge reduced the extent of dentinal tubules occlusion along with time. Dentinal tubules occluded by Novamin-containing toothpaste withstand the acidic challenge comparatively for a longer period.
CONCLUSIONS: The findings demonstrated that occlusion of dentinal tubules is more efficient by the bioactive glass-containing toothpaste and thus may contribute to its better resistance to acidic soft drink challenge.
MATERIALS AND METHODS: Thirty-six patients debonded from fixed appliances at a teaching institution were allocated by block randomization stratified for gender to three groups [VFRs fabricated on conventional, fused deposition modeling (FDM) or stereolithography apparatus (SLA) working models]. Participants wore the VFRs for three months full-time followed by three months part-time. VFRs were collected after each follow-up for Streptococcus and yeast counts. Surface roughness was measured indirectly on the working models using a 3D optical surface texture analyzer. Blinding was not feasible due to appliance appearance. The trial was registered [NCT03844425 ( ClinicalTrials.gov )] and funded by the Universiti Malaya Dental Postgraduate Research Grant (DPRG/14/19).
RESULTS: Thirty participants (eleven conventional, ten FDM, and nine SLA) were analyzed after six dropped out. No harms were reported. Microbial counts between the groups were not significantly different. There were more microbes in the lower VFRs than upper VFRs (total count: p<0.05; effect size, 0.5 during full-time wear and 0.4 during part-time wear). SLA had significantly (p<0.05) smoother surface than FDM (effect size, 0.3) and conventional models (effect size, 0.5). Microbial adherence was not associated with working model surface roughness.
CONCLUSION: Microbial adherence on VFRs was not influenced by degree of surface roughness imprints from working models.
CLINICAL RELEVANCE: 3D printed models can be used to make VFRs. Lower VFRs tended to accumulate oral microbes, potentially increasing the oral health risk in the lower arch.