Displaying all 19 publications

Abstract:
Sort:
  1. Sheshala R, Khan N, Darwis Y
    Chem Pharm Bull (Tokyo), 2011;59(8):920-8.
    PMID: 21804234
    The aims of the present research were to mask the intensely bitter taste of sumatriptan succinate and to formulate orally disintegrating tablets (ODTs) of the taste masked drug. Taste masking was performed by coating sumatriptan succinate with Eudragit EPO using spray drying technique. The resultant microspheres were evaluated for thermal analysis, yield, particle size, entrapment efficiency and in vitro taste masking. The tablets were formulated by mixing the taste masked microspheres with different types and concentrations of superdisintegrants and compressed using direct compression method followed by sublimation technique. The prepared tablets were evaluated for weight variation, thickness, hardness, friability, drug content, water content, in vitro disintegration time and in vitro drug release. All the tablet formulations disintegrated in vitro within 37-410 s. The optimized formulation containing 5% Kollidon CL-SF released more than 90% of the drug within 15 min and the release was comparable to that of commercial product (Suminat®). In human volunteers, the optimized formulation was found to have a pleasant taste and mouth feel and disintegrated in the oral cavity within 41 s. The optimized formulation was found to be stable and bioequivalent with Suminat®.
  2. Sheshala R, Khan N, Chitneni M, Darwis Y
    Arch Pharm Res, 2011 Nov;34(11):1945-56.
    PMID: 22139694 DOI: 10.1007/s12272-011-1115-y
    The aim of this study was to formulate cost effective taste-masked orally disintegrating tablets of ondansetron, a bitter drug using different superdisintegrants by a wet granulation technique. Microcrystalline cellulose (Avicel) as a diluent and disintegrant in addition to aspartame as a sweetener were used in all formulations. The prepared tablets were evaluated for weight variation, thickness, hardness, friability, drug content, water content, in vitro disintegration time and in vitro drug release. The tablets' hardness was maintained in the range of 2-3 kg and friability was <1% for all batches. All tablet formulations disintegrated rapidly in vitro within 5.83 to 33.0 sec. The optimized formulation containing 15% Polyplasdone XL-10 released more than 90% of drug within 5 min and the release was comparable to that of a commercial product. In human volunteers, optimized formulation was found to have a pleasant taste and mouth feel and they disintegrated in the oral cavity within 12 sec. The stability results were also satisfactory. A pharmacokinetic study with the optimized formulation was performed in comparison with a reference (Zofer MD 8®) and they were found to be bioequivalent. In conclusion, a cost effective ondansetron orally disintegrating tablet was successfully prepared with acceptable hardness, desirable taste and rapid disintegration in the oral cavity.
  3. Sheshala R, Peh KK, Darwis Y
    Drug Dev Ind Pharm, 2009 Nov;35(11):1364-74.
    PMID: 19832637 DOI: 10.3109/03639040902939213
    AIM: The aim of this study was to prepare insulin-loaded poly(lactic acid)-polyethylene glycol microspheres that could control insulin release at least for 1 week and evaluate their in vivo performance in a streptozotocin-induced diabetic rat model.
    METHODS: The microspheres were prepared using a water-in-oil-in-water double emulsion solvent evaporation technique. Different formulation variables influencing the yield, particle size, entrapment efficiency, and in vitro release profiles were investigated. The pharmacokinetic study of optimized formulation was performed with single dose in comparison with multiple dose of Humulin 30/70 as a reference product in streptozotocin-induced diabetic rats.
    RESULTS: The optimized formulation of insulin microspheres was nonporous, smooth-surfaced, and spherical in structure under scanning electron microscope with a mean particle size of 3.07 microm and entrapment efficiency of 42.74% of the theoretical amount incorporated. The in vitro insulin release profiles was characterized by a bimodal behavior with an initial burst release because of the insulin adsorbed on the microsphere surface, followed by slower and continuous release corresponding to the insulin entrapped in polymer matrix.
    CONCLUSIONS: The optimized formulation and reference were comparable in the extent of absorption. Consequently, these microspheres can be proposed as new controlled parenteral delivery system.
  4. Dua K, Chakravarthi S, Kumar D, Sheshala R, Gupta G
    Int J Pharm Investig, 2013 Oct;3(4):183-7.
    PMID: 24350037 DOI: 10.4103/2230-973X.121287
    In an attempt for better treatment of bacterial infections and burn wounds, semisolid formulations containing norfloxacin (NF) and natural wound healing agent Curcuma longa were prepared. The rationale behind employing combination of NF and Curcuma longa is to obtain synergistic wound healing effect. The prepared formulations were compared with silver sulfadiazine cream 1%, USP.
  5. Sheshala R, Ying LT, Hui LS, Barua A, Dua K
    PMID: 23746224
    In order to achieve better treatment for local wounds and bacterial infections, topical formulations containing Cocos nucifera Linn. were developed. These formulations were evaluated for their physicochemical properties and antimicrobial efficacy against various strains of microorganisms. Semisolid formulations containing 5% w/w of Cocos nucifera Linn. were prepared by employing different dermatological bases and were evaluated for their physical appearance, pH, rheological properties, FTIR-spectroscopic analysis, thermodynamic stability and stability studies. The antimicrobial activity of each prepared formulation was determined using disk-diffusion method against various strains of microorganisms. All the prepared formulations were found to be stable and exhibited suitable physicochemical characteristics including pH, viscosity and spreadability which are necessary for an ideal topical preparation, in addition to strong antimicrobial activity. Carbopol gel base was found to be the most suitable dermatological base for Cocos nucifera Linn. in comparsion to other bases. Cocos nucifera Linn. formulations showed great potential for wounds and local bacterial infections. Moreover, carbopol gel base with its aesthetic appeal was found to be a suitable dermatological base for Cocos nucifera Linn. semisolid formulation as it had demonstrated significant physicochemical properties and greater diffusion when assessed using disk- diffusion method.
  6. Dua K, Sheshala R, Ling TY, Hui Ling S, Gorajana A
    PMID: 23286236
    At present, approximately 25%of drugs in modern pharmacopoeia are derived from plant sources (phytomedicines) that can be developed for the treatment of diseases and disorders. Many other drugs are synthetic analogues built on the prototype compounds isolated from plants. Cocos nucifera Linn. (Arecaceae), which is commonly known as coconut, is a plant possessing a lot of potential as an ingredient in traditional medicines for the treatment of metabolic disorders and particularly as an anti-inflammatory, antimicrobial and analgesic agent. This review emphasizes on the recent literature and research findings that highlight the significant biological activities of C. nucifera Linn. such as its anti-inflammatory, antimicrobial and analgesic properties. This review can help researchers keen on exploiting the therapeutic potential of C. nucifera Linn. which may motivate them to further explore their commercial viability.
  7. Sheshala R, Anuar NK, Abu Samah NH, Wong TW
    AAPS PharmSciTech, 2019 Apr 15;20(5):164.
    PMID: 30993407 DOI: 10.1208/s12249-019-1362-7
    This review highlights in vitro drug dissolution/permeation methods available for topical and transdermal nanocarriers that have been designed to modulate the propensity of drug release, drug penetration into skin, and permeation into systemic circulation. Presently, a few of USFDA-approved in vitro dissolution/permeation methods are available for skin product testing with no specific application to nanocarriers. Researchers are largely utilizing the in-house dissolution/permeation testing methods of nanocarriers. These drug release and permeation methods are pending to be standardized. Their biorelevance with reference to in vivo plasma concentration-time profiles requires further exploration to enable translation of in vitro data for in vivo or clinical performance prediction.
  8. Mishra D, Gade S, Glover K, Sheshala R, Singh TRR
    Curr Eye Res, 2023 Feb;48(2):208-218.
    PMID: 36036478 DOI: 10.1080/02713683.2022.2119254
    Purpose: Intravitreal administration of drug molecules is one of the most common routes for treating posterior segment eye diseases. However, the properties of vitreous humour changes with the time. A number of ocular complications such as liquefaction of the vitreous humour, solidification of the vitreous humour in the central vitreous cavity and detachment of the limiting membrane due to the shrinking of vitreous humour are some of the factors that can drastically affect the efficacy of therapeutics delivered via intravitreal route. Although significant research has been conducted for studying the properties of vitreous humour and its changes during the ageing process, there have been limited work to understand the effect of these changes on therapeutic efficacy of intravitreal drug delivery systems. Therefore, in this review we discussed both the coomposition and characteristics of the vitreous humour, and their subsequent influence on intravitreal drug delivery.Methods: Articles were searched on Scopus, PubMed and Web of Science up to March 2022.Results: In this review, we discussed the biological composition and biomechanical properties of vitreous humour, methods to study the properties of vitreous humour and the changes in these properties and their relevance in ocular drug delivery field, with the aim to provide a useful insight into these aspects which can aid the process of development of novel intravitreal drug delivery systems.Conclusions: The composition and characteristics of the vitreous humour, and how these change during natural aging processes, directly influence intravitreal drug delivery. This review therefore highlights the importance of understanding the properties of the vitreous and identifies the need to achieve greater understanding of how changing properties of the vitreous affect the therapeutic efficacy of drugs administered for the treatment of posterior eye diseases.
  9. Yellepeddi VK, Sheshala R, McMillan H, Gujral C, Jones D, Raghu Raj Singh T
    Drug Discov Today, 2015 Jul;20(7):884-9.
    PMID: 25668579 DOI: 10.1016/j.drudis.2015.01.013
    Punctal plugs (PPs) are miniature medical implants that were initially developed for the treatment of dry eyes. Since their introduction in 1975, many PPs made from different materials and designs have been developed. PPs, albeit generally successful, suffer from drawbacks such as epiphora and suppurative canaliculitis. To overcome these issues intelligent designs of PPs were proposed (e.g. SmartPLUG™ and Form Fit™). PPs are also gaining interest among pharmaceutical scientists for sustaining drug delivery to the eye. This review aims to provide an overview of PPs for dry eye treatment and drug delivery to treat a range of ocular diseases. It also discusses current challenges in using PPs for ocular diseases.
  10. Dua K, Sheshala R, Al-Waeli HA, Gupta G, Chellappan DK
    Recent Pat Drug Deliv Formul, 2015;9(3):257-61.
    PMID: 26051152
    Natural products like plants and its components have been in use for treatment and cure of diseases all around the globe from ancient times much before the discovery of the current modern drugs. These substances from the nature are well known to contain components which have therapeutic properties and can also behave as precursors for the synthesis of potential drugs. The beneficial results from herbal drugs are well reported where their popularity in usage has increased across the globe. Subsequently developing countries are now recognizing the many positive advantages from their use which has engaged the expansion of R & D from herbal research. The flow on effect from this expansion has increased the awareness to develop new herbal products and the processes, throughout the entire world. Mouth washes and mouth rinses which have plant oils, plant components or extracts have generated particular attention. High prevalence of gingival inflammation and periodontal diseases, suggests majority of the patients practice inadequate plaque control. Of the currently available mouthwashes in the market, Chlorhexidine gluconate (CHX) has been investigated on a larger scale with much detail. CHX is associated with side effects like staining of teeth when used daily as well as the bitter taste of the mouthwash which leads to patient incompliance. The present research encompasses the antibacterial activity of extemporaneously prepared herbal mouthwash using natural herbs and therefore allows for the potential commercialization with in the herbal and pharmaceutical industries. Also, the present research article reviewed details of various existing patents of herbal mouthwashes which shows the trend of existing market and significance of emerging mouthwashes in both pharmaceutical and herbal industries. The antimicrobial activity of prepared mouthwashes was found to be effective against various strains of bacteria. It also suggests that the prepared herbal mouthwashes may provide an alternative to those containing chemical entities, with enhanced antimicrobial properties and better patient compliance.
  11. Sheshala R, Kok YY, Ng JM, Thakur RR, Dua K
    Recent Pat Drug Deliv Formul, 2015;9(3):237-48.
    PMID: 26205681
    Ophthalmic drug delivery system is very interesting and challenging due to the normal physiologically factor of eyes which reduces the bioavailability of ocular products. The development of new ophthalmic dosage forms for existing drugs to improve efficacy and bioavailability, patient compliance and convenience has become one of the main trend in the pharmaceuticals industry. The present review encompasses various conventional and novel ocular drug delivery systems, methods of preparation, characterization and recent research in this area. Furthermore, the information on various commercially available in situ gel preparations and the existing patents of in situ drug delivery systems i.e. in situ gel formation of pectin, in situ gel for therapeutic use, medical uses of in situ formed gels and in situ gelling systems as sustained delivery for front of eye are also covered in this review.
  12. Soliman K, Jirjees F, Sonawane R, Sheshala R, Wang Y, Jones D, et al.
    J Chromatogr Sci, 2021 Jan 01;59(1):64-70.
    PMID: 33047781 DOI: 10.1093/chromsci/bmaa078
    Anti-glaucoma latanoprost-loaded ocular implants provide prolonged delivery and enhanced bioavailability relative to the conventional eye drops. This study aims at the development and validation of a reversed-phase high-performance liquid chromatography method for quantitative analysis of nanogram levels of latanoprost in the eye, and for the first time, compares the use of fluorescence vs ultraviolet (UV) detectors in latanoprost quantification. The mobile phase was composed of acetonitrile:0.1% v/v formic acid (60:40, v/v) with a flow rate of 1 mL/min and separation was done using a C18 column at temperature 40°C. The fluorescence excitation and emission wavelengths were set at 265 and 285 nm, respectively, while the UV absorption was measured at 200 nm. The latanoprost concentration-peak area relationship maintained its linearity (R2 = 0.9999) over concentration ranges of 0.063-10 μg/mL and 0.212-10 μg/mL for the fluorescence and UV detectors, respectively. The UV detector showed better precision, while the fluorescence detector exhibited higher robustness and greater sensitivity, with a detection limit of 0.021 μg/mL. The fluorescence detector was selected for quantification of latanoprost released from ocular implants in vitro and in porcine ocular tissues. The developed method is a robust, rapid and cost-effective alternative to liquid chromatography-mass spectrometry for routine analysis of latanoprost released from ocular implants.
  13. Adrianto MF, Annuryanti F, Wilson CG, Sheshala R, Thakur RRS
    Drug Deliv Transl Res, 2021 Aug 11.
    PMID: 34382178 DOI: 10.1007/s13346-021-01043-z
    The delivery of drugs to the posterior segment of the eye remains a tremendously difficult task. Prolonged treatment in conventional intravitreal therapy requires injections that are administered frequently due to the rapid clearance of the drug molecules. As an alternative, intraocular implants can offer drug release for long-term therapy. However, one of the several challenges in developing intraocular implants is selecting an appropriate in vitro dissolution testing model. In order to determine the efficacy of ocular implants in drug release, multiple in vitro test models were emerging. While these in vitro models may be used to analyse drug release profiles, the findings may not predict in vivo retinal drug exposure as this is influenced by metabolic and physiological factors. This review considers various types of in vitro test methods used to test drug release of ocular implants. Importantly, it discusses the challenges and factors that must be considered in the development and testing of the implants in an in vitro setup.
  14. Jirjees F, Soliman K, Wang Y, Sonawane R, Sheshala R, Jones D, et al.
    J Pharm Biomed Anal, 2019 Sep 10;174:145-150.
    PMID: 31167158 DOI: 10.1016/j.jpba.2019.05.038
    Bevacizumab is a full-length human monoclonal antibody used to treat various neovascular diseases such as wet age-related macular degeneration (AMD), diabetic eye disease and other problems of the retina. Monthly intravitreal injections of bevacizumab (Avastin®) are effective in the treatment of wet AMD. However, there is a growing demand in the development of sustained release ophthalmic formulations. Therefore, this study aims, for the first time, to develop a rapid, simple, and sensitive method using size exclusion chromatography coupled with fluorescence detection for routine quantification of bevacizumab in ophthalmic formulations and during in vitro release studies. The selected chromatographic conditions included an aqueous mobile phase composed of 35 mM sodium phosphate buffer and 300 mM sodium chloride (pH 6.8), a flow rate of 0.5 mL/min, and the fluorescence detector was operated at excitation and emission wavelengths of 280 and 340 nm, respectively. The peak area-concentration relationship maintained its linearity over concentration range of 0.1-20 μg/mL (R2 = 0.9993), and the quantitation limit was 100 ng/mL. The method was validated for specificity, accuracy, precision, and robustness. The developed method had a run time of 6 min at temperature 25 °C, making it a unique validated method for rapid and cost-effective quantification of bevacizumab.
  15. Sheshala R, Hong GC, Yee WP, Meka VS, Thakur RRS
    Drug Deliv Transl Res, 2019 04;9(2):534-542.
    PMID: 29484530 DOI: 10.1007/s13346-018-0491-y
    The objectives of this study were to develop biodegradable poly-lactic-co-glycolic acid (PLGA) based injectable phase inversion in situ forming system for sustained delivery of triamcinolone acetonide (TA) and to conduct physicochemical characterisation including in vitro drug release of the prepared formulations. TA (at 0.5%, 1% and 2.5% w/w loading) was dissolved in N-methyl-2-pyrrolidone (NMP) solvent and then incorporated 30% w/w PLGA (50/50 and 75/25) polymer to prepare homogenous injectable solution. The formulations were evaluated for rheological behaviour using rheometer, syringeability by texture analyser, water uptake and rate of implant formation by optical coherence tomography (OCT) microscope. Phase inversion in situ forming formulations were injected into PBS pH 7.3 to form an implant and release samples were collected and analysed for drug content using a HPLC method. All formulations exhibited good syringeability and rheological properties (viscosity: 0.19-3.06 Pa.s) by showing shear thinning behaviour which enable them to remain as free-flowing solution for ease administration. The results from OCT microscope demonstrated that thickness of the implants were increased with the increase in time and the rate of implant formation indicated the fast phase inversion. The drug release from implants was sustained over a period of 42 days. The research findings demonstrated that PLGA/NMP-based phase inversion in situ forming implants can improve compliance in patient's suffering from ocular diseases by sustaining the drug release for a prolonged period of time and thereby reducing the frequency of ocular injections.
  16. Sheshala R, Quah SY, Tan GC, Meka VS, Jnanendrappa N, Sahu PS
    Drug Deliv Transl Res, 2019 04;9(2):434-443.
    PMID: 29392681 DOI: 10.1007/s13346-018-0488-6
    The objectives of present research were to develop and characterize thermosensitive and mucoadhesive polymer-based sustained release moxifloxacin in situ gels for the treatment of periodontal diseases. Poloxamer- and chitosan-based in situ gels are in liquid form at room temperature and transform into gel once administered into periodontal pocket due to raise in temperature to 37 °C. Besides solution-to-gel characteristic of polymers, their mucoadhesive nature aids the gel to adhere to mucosa in periodontal pocket for prolonged time and releases the drug in sustained manner. These formulations were prepared using cold method and evaluated for pH, solution-gel temperature, syringeability and viscosity. In vitro drug release studies were conducted using dialysis membrane at 37 °C and 50 rpm. Antimicrobial studies carried out against Aggregatibacter actinomycetemcomitans (A.A.) and Streptococcus mutans (S. Mutans) using agar cup-plate method. The prepared formulations were clear and pH was at 7.01-7.40. The viscosity of formulations was found to be satisfactory. Among the all, formulations comprising of 21% poloxamer 407 and 2% poloxamer 188 (P5) and in combination with 0.5% HPMC (P6) as well as 2% chitosan and 70% β-glycerophosphate (C6) demonstrated an ideal gelation temperature (33-37 °C) and sustained the drug release for 8 h. Formulations P6 and C6 showed promising antimicrobial efficacy with zone of inhibition of 27 mm for A.A. and 55 mm for S. Mutans. The developed sustained release in situ gel formulations could enhance patient's compliance by reducing the dosing frequency and also act as an alternative treatment to curb periodontitis.
  17. Ganguly A, Ian CK, Sheshala R, Sahu PS, Al-Waeli H, Meka VS
    J Mater Sci Mater Med, 2017 Mar;28(3):39.
    PMID: 28144851 DOI: 10.1007/s10856-017-5852-4
    The objective of this study was to prepare periodontal gels using natural polymers such as badam gum, karaya gum and chitosan. These gels were tested for their physical and biochemical properties and assessed for their antibacterial activity against Aggregatibacter actinomycetemcomitans and Streptococcus mutans, two pathogens associated with periodontal disease. Badam gum, karaya gum and chitosan were used to prepare gels of varying concentrations. Moxifloxacin hydrochloride, a known antimicrobial drug was choosen in the present study and it was added to the above gels. The gels were then run through a battery of tests in order to determine their physical properties such as pH and viscosity. Diffusion studies were carried out on the gels containing the drug. Antimicrobial testing of the gels against various bacteria was then carried out to determine the effectiveness of the gels against these pathogens. The results showed that natural polymers can be used to produce gels. These gels do not have inherent antimicrobial properties against A. actinomycetemcomitans and S. mutans. However, they can be used as a transport vehicle to carry and release antimicrobial drugs.
  18. Shadab M, Haque S, Sheshala R, Meng LW, Meka VS, Ali J
    Curr Pharm Des, 2017;23(3):440-453.
    PMID: 27784250 DOI: 10.2174/1381612822666161026163201
    BACKGROUND: The drug delivery of macromolecules such as proteins and peptides has become an important area of research and represents the fastest expanding share of the market for human medicines. The most common method for delivering macromolecules is parenterally. However parenteral administration of some therapeutic macromolecules has not been effective because of their rapid clearance from the body. As a result, most macromolecules are only therapeutically useful after multiple injections, which causes poor compliance and systemic side effects.

    METHOD: Therefore, there is a need to improve delivery of therapeutic macromolecules to enable non-invasive delivery routes, less frequent dosing through controlled-release drug delivery, and improved drug targeting to increase efficacy and reduce side effects.

    RESULT: Non-invasive administration routes such as intranasal, pulmonary, transdermal, ocular and oral delivery have been attempted intensively by formulating macromolecules into nanoparticulate carriers system such as polymeric and lipidic nanoparticles.

    CONCLUSION: This review discusses barriers to drug delivery and current formulation technologies to overcome the unfavorable properties of macromolecules via non-invasive delivery (mainly intranasal, pulmonary, transdermal oral and ocular) with a focus on nanoparticulate carrier systems. This review also provided a summary and discussion of recent data on non-invasive delivery of macromolecules using nanoparticulate formulations.

  19. Sheshala R, Wai NZ, Said ID, Ashraf K, Lim SM, Ramasamy K, et al.
    Turk J Pharm Sci, 2022 Dec 21;19(6):671-680.
    PMID: 36544377 DOI: 10.4274/tjps.galenos.2021.40121
    OBJECTIVES: Orthosiphon stamineus Benth. (OS) is a commonly used medicinal plant for curbing bacterial infections globally. This work aimed to fabricate poloxamer and chitosan-based in situ gels loaded with standardized aqueous-ethanolic OS leaf extracts and investigate their antimicrobial efficacy as a potential remedy against ocular infections.

    MATERIALS AND METHODS: In situ gels containing 0.5% w/v OS extract prepared using cold dispersion method were subjected to physicochemical characterization, including in vitro-release studies. Antimicrobial efficacy was tested against Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa using agar diffusion method.

    RESULTS: Thin layer chromatography and high performance liquid chromatography chromatograms confirmed the presence of rosmarinic acid (RA) and sinensitin in OS extracts with same retention factor (0.26 and 0.49) and retention times (12.2 and 20.7 min) against reference standards. A homogenous brown coloured in situ gel exhibited low viscosity as a solution and increased viscosity in gel form at ocular temperature. The optimized formulations, P7 (21% P407/4% P188), P8 (21% P407/5% P188) and F5 (1.5% chitosan and 45% β-glycerophosphate) exhibited ideal ocular pH (7.27-7.46), phase transition at ocular temperature (33-37°C) and prolonged RA release up to 12 h. Formulation F5 showed an inhibition zone of 4.3 mm against M. luteus.

    CONCLUSION: Among all, formulation F5 alone exhibited modest antimicrobial activity against M. luteus. OS extracts at 5% and 10% were most active against tested bacteria however, loading them into in situ gels resulted in sedimentation. Hence, isolation of RA from OS extract is suggested before loading into formulations for a better antimicrobial activity.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links