Carbon from jatropha seed hull (JC) was prepared to study the adsorption of cadmium ions (Cd(2+)) from aqueous solutions under various experimental conditions. Batch equilibrium methods have been used to study the influences of the initial metal ion concentration (0.5-50 ppm), dosage (0.2-1 g), contact time (0-300 min), pH (2-7), and temperature (26-60 °C) on adsorption behavior. It has been found that the amount of cadmium adsorbed increases with the initial metal ion concentration, temperature, pH, contact time, and amount of adsorbent. A kinetic study proved that the mechanism of Cd(2+) adsorption on JC followed a three steps process, confirmed by an intraparticle diffusion model: rapid adsorption of metal ions, a transition phase, and nearly flat plateau section. The experimental results also showed that the Cd(2+) adsorption process followed pseudo-second-order kinetics. The Langmuir and Freundlich adsorption isotherm models were used to describe the experimental data, with the former exhibiting a better correlation coefficient than the latter (R² = 0.999). The monolayer adsorption capacity of JC has been compared with the capacities of the other reported agriculturally-based adsorbents. It has been clearly demonstrated that this agricultural waste generated by the biofuel industry can be considered a potential low-cost adsorbent for the removal of Cd(2+) from industrial effluents.
The production of carbon dioxide from Karas woods under argon atmosphere was investigated using a direct pyrolysis-combustion approach. Direct burning was used in this study, using argon for yrolysis and oxygen during combustion to look at the yield of carbon dioxide, produced at different parameters, such as the temperature, retention time and flow rate of argon, as the carrier gas. In this study, a new methodology, 23 response surface central composite design was successfully employed for the experimental design and analysis of results. Central composite experimental design and response surface method were utilized to determine the best operating condition for a maximum carbon dioxide production. Appropriate predictable empirical linear model was developed by incorporating interaction effects of all the variables involved. The results of the analysis revealed that linear equation models fitted well with the experimental for carbon dioxide yield. Nevertheless, the R-Squared obtained using the direct pyrolysis-combustion was 0.7118, indicating that the regression line was not at the best-fitted line.
Production of carbon dioxide from degraded woods especially Karas or Aquilariella Malaccensis using integrated pyrolysis-combustion is important for radiocarbon dating application. The effects of pyrolysis temperatures (300-400 0 C), retention times (20-35 minutes) and flow rates of argon (400- 1000 ml/min) on the production of carbon dioxide were studied. The experiments were arranged according to a 2 3 response surface central composite statistical design (CSD). This response surface methodology (RSM) was used to assess factor interactions and empirical models regarding carbon dioxide yield. The optimized yield of carbon dioxide was 82.57% for Karas and the optimum reaction conditions are 300 0 C of pyrolysis temperature, 20 minutes retention time and 982ml/min flow rates of argon. Scanning electron microscope (SEM) and X-ray Diffraction (XRD) were conducted to assess the morphological characteristics of the woods and to look at the potential crystalline structure produced after the process took place, respectively.
Palm oil mill effluent (POME) treatment has developed in the last decade. Due to the characteristic and volume of POME,
it needed a complete treatment to reduce the pollutant content. Three pre-treatments method, ultrafiltration, adsorption
and decantation were applied prior to nanofiltration (NF) membrane. The polyethersulphone membrane, montmorillonite
as the adsorbent and modern decanter was investigated in this research. Two types of NF membrane, named NF-1 and
NF-ASP30 were used after pre-treatment. The removal of four important parameters were determined i.e. COD, TSS, colour
and turbidity. The results showed that the adsorption and UF is better than decantation pre-treatment. The ultrafiltration
and adsorption can reduce POME content more than 80% for all parameter while decantation varied between 40 and 80%.
The combination of ultrafiltration and adsorption with both of NF membrane can removed almost all the parameter. But
the decantation can only remove the turbidity but not for the rest of the parameters. Besides the POME content, the flux
decline for both of NF membrane was also investigated. The flux of NF-1 membrane was higher than NF-ASP30 membrane
but NF-ASP was more relative stable for the flux decline. Overall, NF-1 has better performance in flux decline.
Manganese (Mn(2+)) is one of the inorganic contaminant that causes problem to water treatment and water distribution due to the accumulation on water piping systems. In this study, Bacillus sp. and sewage activated sludge (SAS) were investigated as biosorbents in laboratory-scale experiments. The study showed that Bacillus sp. was a more effective biosorbent than SAS. The experimental data were fitted to the Langmuir (Langmuir-1 & Langmuir-2), Freundlich, Temkin, Dubinin-Radushkevich (D-R) and Redlich-Peterson (R-P) isotherms to obtain the characteristic parameters of each model. Mn(2+) biosorption by Bacillus sp. was found to be significantly better fitted to the Langmuir-1 isotherm than the other isotherms, while the D-R isotherm was the best fit for SAS; i.e., the χ(2) value was smaller than that for the Freundlich, Temkin, and R-P isotherms. According to the evaluation using the Langmuir-1 isotherm, the maximum biosorption capacities of Mn(2+) onto Bacillus sp. and SAS were 43.5 mg Mn(2+)/g biomass and 12.7 mg Mn(2+)/g biomass, respectively. The data fitted using the D-R isotherm showed that the Mn(2+) biosorption processes by both Bacillus sp. and SAS occurred via the chemical ion-exchange mechanism between the functional groups and Mn(2+) ion.
This study determined the most effective microbes acting as ammonia-oxidising (AOB) and manganese-oxidising bacteria (MnOB) for the simultaneous removal of ammonia (NH(4)(+)-N) and manganese (Mn(2+)) from water. Two conditions of mixed culture of bacteria: an acclimatised mixed culture (mixed culture: MC) in a 5-L bioreactor and biofilm attached on a plastic medium (stages of mixed culture: SMC) in a biological aerated filter were isolated and identified using Biolog MicroSystem and 16S rRNA sequencing. A screening test for determining the most effective microbe in the removal of NH(4)(+)-N and Mn(2+) was initially performed using SMC and MC, respectively, and found that Bacillus cereus was the most effective microbe for the removal of NH(4)(+)-N and Mn(2+). Moreover, the simultaneous NH(4)(+)-N and Mn(2+) removal (above 95% removal for both NH(4)(+)-N and Mn(2+)) was achieved using a biological aerated filter under various operating conditions. Thus, the strain could act as an effective microbe of AOB and a MnOB for the simultaneous removal of NH(4)(+)-N and Mn(2+).
This study investigated acclimation ability of native Chlorella sorokiniana (CS-N) and commercial Chlorella sorokiniana (CS-C) in palm oil mill effluent (POME), their metabolic profile and feasibility of effluent recycling for dilution purpose. Maximum specific growth rate, µmax and lag time, λ of the microalgae were evaluated. Result shows both strains produced comparable growth in POME, with µmax of 0.31 day-1 and 0.30 day-1 respectively, albeit longer λ by the CS-C. However, three cycles of acclimation was able to reduce λ from eight days to two days for CS-C. Metabolic profiling using principal component analysis (PCA) shows clear cluster of acclimatized strains to suggest better stress tolerance of CS-N. Finally, a remarkable µmax of 0.57 day-1 without lag phase was achieved using acclimatized CS-N in 40% POME concentration. Acclimation has successfully shortened the λ and dilution with final effluent was proved to be feasible for further improvement of the microalgae growth.
This study was conducted to examine the production of bioflocculants using agricultural wastewater as a fermentation feedstock under different temperatures and incubation times. The mechanism of flocculation was studied to gain a detailed understanding of the flocculation activity. The highest bioflocculant yield (2.03 g/L) at a temperature of 40 °C was produced in a palm oil mill effluent medium (BioF-POME). Bioflocculant produced from a fermented SME medium (BioF-SME) showed the highest activity. The flocculation tests for colour and turbidity removal from lake water indicated that BioF-SME and BioF-POME performed comparably to commercial alum. Analyses of the bioflocculants using liquid chromatography-mass spectrometry (LC-MS) found that the bioflocculants contained xylose and glucose. The mechanism study showed that flocculation occurred through charge neutralization and interparticle bridging between the bioflocculant polymer and the particles in the lake water. Thus, agricultural wastewater can be used as a fermentation feedstock for high-quality bioflocculants.
Greenhouse experiments were carried out to determine the phytotoxic effects on the plant Ludwigia octovalvis in order to assess its applicability for phytoremediation gasoline-contaminated soils. Using plants to degrade hydrocarbons is a challenging task. In this study, different spiked concentrations of hydrocarbons in soil (1, 2, and 3 g/kg) were tested. The results showed that the mean efficiency of total petroleum hydrocarbon (TPH) removal over a 72-day culture period was rather high. The maximum removal of 79.8 % occurred for the 2 g/kg concentration, while the removal rate by the corresponding unplanted controls was only (48.6 %). The impact of gasoline on plants included visual symptoms of stress, yellowing, growth reduction, and perturbations in the developmental parameters. The dry weight and wet weight of the plant slightly increased upon exposure to gasoline until day 42. Scanning electron microscopy (SEM) indicated change to the root and stem structure in plant tissue due to the direct attachment with gasoline contaminated compared to the control sample. The population of living microorganisms in the contaminated soil was found to be able to adapt to different gasoline concentrations. The results showed that L. octovalvis and rhizobacteria in gasoline-contaminated soil have the potential to degrade organic pollutants.
This study investigated the optimum conditions for total petroleum hydrocarbon (TPH) removal from diesel-contaminated water using phytoremediation treatment with Scirpus grossus. In addition, TPH removal from sand was adopted as a second response. The optimum conditions for maximum TPH removal were determined through a Box-Behnken Design. Three operational variables, i.e. diesel concentration (0.1, 0.175, 0.25% Vdiesel/Vwater), aeration rate (0, 1 and 2 L/min) and retention time (14, 43 and 72 days), were investigated by setting TPH removal and diesel concentration as the maximum, retention time within the given range, and aeration rate as the minimum. The optimum conditions were found to be a diesel concentration of 0.25% (Vdiesel/Vwater), a retention time of 63 days and no aeration with an estimated maximum TPH removal from water and sand of 76.3 and 56.5%, respectively. From a validation test of the optimum conditions, it was found that the maximum TPH removal from contaminated water and sand was 72.5 and 59%, respectively, which was a 5 and 4.4% deviation from the values given by the Box-Behnken Design, providing evidence that S. grossus is a Malaysian native plant that can be used to remediate wastewater containing hydrocarbons.
One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.
Two types of flow system, free surface flow (FSF) and sub-surface flow (SSF), were examined to select a better way to remove total petroleum hydrocarbons (TPH) using diesel as a hydrocarbon model in a phytotoxicity test to Scirpus grossus. The removal efficiencies of TPH for the two flow systems were compared. Several wastewater parameters, including temperature (T, °C), dissolved oxygen (DO, mgL(-1)), oxidation-reduction potential (ORP, mV), and pH were recorded during the experimental runs. In addition, overall plant lengths, wet weights, and dry weights were also monitored. The phytotoxicity test using the bulrush plant S. grossus was run for 72 days with different diesel concentrations (1%, 2%, and 3%) (Vdiesel/Vwater). A comparison between the two flow systems showed that the SSF system was more efficient than the FSF system in removing TPH from the synthetic wastewater, with average removal efficiencies of 91.5% and 80.2%, respectively. The SSF system was able to tolerate higher diesel concentrations than was the FSF system.
Phytoremediation is a technology to clean the environment from heavy metals contamination. The objectives of this study are to threat Pb contaminated wastewater by using phytoremediation technology and to determine if the plant can be mention as hyperaccumulator. Fifty plants of Scirpus grossus were grown in sand medium and 600 L spiked water in various Pb concentration (10, 30 and 50 mg/L) was exposed. The experiment was conducted with single exposure method, sampling time on day-1, day-14, day-28, day-42, day-70, and day-98. The analysis of Pb concentration in water, sand medium and inside the plant tissue was conducted by ICP-OES. Water samples were filtered and Pb concentration were directly analyzed, Pb in sand samples were extracted by EDTA method before analyzed, and Pb in plant tissues were extracted by wet digestion method and analyzed. The results showed that on day-28, Pb concentration in water decreased 100%, 99.9%, 99.7%, and the highest Pb uptake by plant were 1343, 4909, 3236 mg/kg for the treatment of 10, 30, and 50 mg/L respectively. The highest BC and TF were 485,261 on day-42 and 2.5295 on day-70 of treatment 30 mg/L, it can be mentioned that Scirpus grossus is a hyperaccumulator.
Wilting, especially of the leaves, was observed as an initial symptom of arsenate [As(V)] to Ludwigia octovalvis (Jacq.) P. H. Raven. The plants tolerated As(V) levels of 39 mg kg⁻¹ for as long as 35 days of exposure. After 91 days, the maximum concentration of As uptake in the plant occurred at As(V) concentration of 65 mg kg⁻¹ while As concentration in the stems, roots and leaves were 6139.9 ± 829.5, 1284.5 ± 242.9 and 1126.1 ± 117.2 mg kg⁻¹, respectively. In conclusion, As(V) could cause toxic effects in L. octovalvis and the plants could uptake and accumulate As in plant tissues.
In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.
A lab-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR), a combined adsorption and biological process, was developed to treat real wastewater from a recycled paper mill. In this study, one-consortia of mixed culture (4000-5000 mg/L) originating from recycled paper mill activated sludge from Kajang, Malaysia was acclimatized. The GAC-SBBR was fed with real wastewater taken from the same recycled paper mill, which had a high concentration of chemical oxygen demand (COD) and adsorbable organic halides (AOX). The operational duration of the GAC-SBBR was adjusted from 48 h to 24, 12 and finally 8 h to evaluate the effect of the hydraulic retention time (HRT) on the simultaneous removal of COD and AOX. The COD and AOX removals were in the range of 53-92% and 26-99%, respectively. From this study, it was observed that the longest HRT (48 h) yielded a high removal of COD and AOX, at 92% and 99%, respectively.
In this study, bulrush (Scirpus grossus) was subjected to a 72 day phytotoxicity test to assess its ability to phytoremediate diesel contamination in simulated wastewater at different concentrations (0, 8700, 17,400 and 26,100mg/L). Diesel degradation by S. grossus was measured in terms of total petroleum hydrocarbon (TPH-D). The TPH-D concentration in the synthetic wastewater was determined with the liquid-liquid extraction method and gas chromatography. S. grossus was found to reduce TPH-D by 70.0 and 80.2% for concentrations of 8700 mg/L and 17,400mg/L, respectively. At a diesel concentration of 26,100mg/L, S. grossus died after 14 days. Additionally, the biomass of S. grossus plants was found to increase throughout the phytotoxicity test, confirming the ability of the plant to survive in water contaminated with diesel at rates of less than 17,400mg/L.
A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed.
Transesterification reaction of Jatropha curcas oil with methanol was carried out in the presence of ash generated from Palm empty fruit bunch (EFB) in a heterogeneous catalyzed process. The ash was doped with KOH by impregnation to achieve a potassium level of 20 wt.%. Under optimum conditions for the EFB-catalyzed (65 °C, oil/methanol ratio of 15, 90 min, 20 wt.% EFB ash catalyst) and the KOH-EFB-catalyzed reactions (65 °C, oil/methanol ratio of 15, 45 min, 15 wt.% of KOH doped EFB ash), biodiesel (>98%) with specifications higher than those stipulated by European biodiesel quality standard EN 14214 was obtained.
The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents.