Displaying all 13 publications

Abstract:
Sort:
  1. Sumera A, Radhakrishnan A, Baba AA, George E
    Blood Cells Mol. Dis., 2015 Apr;54(4):348-52.
    PMID: 25648458 DOI: 10.1016/j.bcmd.2015.01.008
    Thalassemia is known as a diverse single gene disorder, which is prevalent worldwide. The molecular chaperones are set of proteins that help in two important processes while protein synthesis and degradation include folding or unfolding and assembly or disassembly, thereby helping in cell homeostasis. This review recaps current knowledge regarding the role of molecular chaperones in thalassemia, with a focus on beta thalassemia.
  2. Sumera A, Radhakrishnan AK, Aziz Baba A, George E
    Malays J Pathol, 2020 Dec;42(3):323-332.
    PMID: 33361713
    The long non-coding RNAs (lncRNAs) are the most prevalent and functionally diverse member of the non-coding RNA (ncRNA). The lncRNA has previously been considered to be a form of transcriptional "noise" but recent studies have found that the lncRNA to be associated with various disease conditions. It has also been found to play important roles in various physiological processes such as haemopoiesis, where lncRNA is reported to act as a fine-tuner of this very important process. To date, the effects of dysregulated lncRNA in thalassaemia has not been fully explored. This review article focuses on the possible roles of dysregulated lncRNAs in the pathogenesis of thalassaemia.
  3. Akash M, Zaib S, Ahmad M, Sultan S, Al-Hussain SA
    Front Chem, 2024;12:1371377.
    PMID: 38545466 DOI: 10.3389/fchem.2024.1371377
    Urease, a nickel-dependent enzyme found in various life forms, catalyzes urea breakdown, concluding nitrogen metabolism by generating ammonia and carbamate. This process causes a rise in pH, supports the survival of pathogens, and can lead to infections such as gastric disorders like ulcers and cancer in humans. Helicobacter pylori employs urease for survival in the acidic environment of the stomach and in protein synthesis. To treat such infections and inhibit the growth of pathogens, it is mandatory to obstruct urease activity; therefore, derivatives of 1-(3-nitropyridin-2-yl)piperazine were synthesized (5a-o; 7a-k). All these newly synthesized compounds were investigated for urease inhibition by in vitro inhibition assays. The results showed that 5b and 7e are the most active inhibitors, having IC50 values of 2.0 ± 0.73 and 2.24 ± 1.63 µM, respectively. These IC50 values are lower than the IC50 value of the standard thiourea, which was 23.2 ± 11.0 µM. The hemolysis potential of 5b, 5c, 5i, 7e, and 7h was also determined; 7e and 7h exhibited good biocompatibility in human blood cells. Through in silico analysis, it was shown that both these potent inhibitors develop favorable interactions with the active site of urease, having binding energies of -8.0 (5b) and -8.1 (7e) kcal/mol. The binding energy of thiourea was -2.8 kcal/mol. Moreover, 5b and 7e have high gastrointestinal permeability as predicted via computational analysis. On the other hand, the IC50 value and binding energy of precursor compound 3 was 3.90 ± 1.91 µM and -6.1 kcal/mol, respectively. Consequently, 5b and 7e can serve as important inhibitors of urease.
  4. Banneheke H, Nadarajah VD, Ramamurthy S, Sumera A, Ravindranath S, Jeevaratnam K, et al.
    BMC Med Educ, 2017 Aug 08;17(1):130.
    PMID: 28789645 DOI: 10.1186/s12909-017-0966-4
    BACKGROUND: Student perspectives of clinical preparedness have been studied in the literature, but the viewpoint of supervisors is limited. Hence, the aim was to examine the perspective of supervisors on the characteristics of health professional students important for preparedness for clinical learning.

    METHODS: This was a descriptive, questionnaire-based, cross-sectional study conducted at three higher education institutions in Malaysia. A previously published questionnaire with 62 characteristics was adopted with modifications after pre-testing. Descriptive analysis was completed for the demographic data. The sample was grouped based on health profession, clinical practice experience and teaching experience for further analysis. Non-parametric Kruskal-Wallis test was selected to evaluate differences in mean ranks to assess the null hypothesis that the medians are equal across the groups. Kruskal-Wallis post-hoc pair wise comparison was performed on samples with significant differences across samples.

    RESULTS: The sample was comprised of 173 supervisors from medicine (55, 32%), pharmacy (84, 48%) and nursing (34, 20%). The majority (63%) of the supervisors were currently in professional practice. A high percentage (40%) of supervisors had less than 4 years of teaching experience. The highest theme ratings were for willingness (6.00) and professionalism (5.90). There was a significant difference (p 

  5. Ahmad S, Zaib S, Jalil S, Shafiq M, Ahmad M, Sultan S, et al.
    Bioorg Chem, 2018 10;80:498-510.
    PMID: 29996111 DOI: 10.1016/j.bioorg.2018.04.012
    In this research work, we report the synthesis and biological evaluation of two new series of 1-benzyl-4-(benzylidenehydrazono)-3,4-dihydro-1H-benzo[c] [1,2]thiazine 2,2-dioxides and 1-benzyl-4-((1-phenylethylidene)hydrazono)-3,4-dihydro-1H-benzo[c][1,2]thiazine 2,2-dioxides. The synthetic plan involves the mesylation of methyl anthranilate with subsequent N-benzylation of the product. The methyl 2-(N-benzylmethylsulfonamido)benzoate was subjected to cyclization reaction in the presence of sodium hydride to obtain 1-benzyl-1H-benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide which was treated with hydrazine hydrate to get corresponding hydrazone precursor. Finally, the titled compounds were obtained by reaction of hydrazone with various substituted aldehydes and ketones. The synthesized derivatives were subjected to carry out their inhibition activities against monoamine oxidases along with modelling investigations to evaluate their binding interactions and dynamic stability during the docking studies. The inhibition profile of potent compounds was found as competitive for both the isozymes. The compounds were more selective inhibitors of MAO-A as compared to MAO-B. Moreover, drug likeness profile of the derivatives was evaluated to have an additional insight into the physicochemical properties. The molecular dynamic simulations predicted the behaviour of amino acids with the active site residues.
  6. Anyanwu GO, Iqbal J, Khan SU, Zaib S, Rauf K, Onyeneke CE, et al.
    J Ethnopharmacol, 2018 Oct 18.
    PMID: 30342966 DOI: 10.1016/j.jep.2018.10.021
    ETHNOPHARMACOLOGICAL RELEVANCE: Anthocleista vogelii Planch is a medicinal plant traditionally used in West Africa for the management and treatment of diabetes mellitus.

    AIM OF THE STUDY: To determine the antidiabetic activities of chloroform fraction (CF) of Anthocleista vogelii Planch root bark in rats with diet- and alloxan-induced obesity-diabetes.

    MATERIALS AND METHODS: Inhibitory activities of CF against α-amylase and α-glucosidase activities were determined in vitro. Three weeks old rats were fed with high-fat diet for 9 weeks to induce obesity prior to further induction of diabetes using alloxan (150mg/kg body weight, i.p.). Blood glucose levels and body weight were measured every 7 days throughout the experiment. Glucose tolerance was assessed in normal and CF-treated rats on day 21. Terminal blood samples were collected from sacrificed animals for the measurement of serum insulin levels. Pancreases were excised from treated and untreated animals for histopathological examination.

    RESULTS: LCMS/MS chromatographic profile of CF via positive and negative modes revealed 13 and 23 compounds respectively. Further analysis revealed quebrachitol (QCT), loganin, sweroside, oleoside 11-methyl ester and ferulic acid, which have been previously reported for their antidiabetic activities, as constituents of CF. CF inhibited activities of α-amylase (IC50 = 51.60 ± 0.92µg/ml) and α-glucosidase (IC50 = 5.86 ± 0.97µg/ml) in a dose-dependent manner. Treatment of animals with obesity-diabetes with 100 and 200mg/kg CF significantly improved glucose tolerance (P<0.001) and enhanced serum insulin levels (P<0.05) compared to diabetic control rats.

    CONCLUSIONS: Antidiabetic activities of CF might be mediated via inhibition of α-amylase and α-glucosidase activities, elevation of serum insulin concentration, and enhancement of insulin and leptin sensitivity in obesity-diabetes rats. This study further substantiates the traditional use of A. vogelii in the management and treatment of diabetes in Africa and encourages further studies to investigate its mechanism of action.

  7. Saddique FA, Zaib S, Jalil S, Aslam S, Ahmad M, Sultan S, et al.
    Eur J Med Chem, 2018 Jan 01;143:1373-1386.
    PMID: 29126721 DOI: 10.1016/j.ejmech.2017.10.036
    Three series of 4-hydroxy-N'-[benzylidene/1-phenylethylidene]-2-H/methyl/benzyl-1,2-benzothiazine-3-carbohydrazide 1,1-dioxides (9-11)a-l were synthesized and unraveled to be highly potent dual inhibitors of monoamine oxidases (MAO-A and MAO-B). All the examined compounds demonstrated IC50 values in lower micro-molar range for both MAO-A as well as MAO-B. The most active MAO-A inhibitor was 4-hydroxy-N'-(1-phenylethylidene)-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxide (9i) with an IC50 value of 0.11 ± 0.005 μM, whereas, methyl 4-hydroxy-2H-benzo[e][1,2]thiazine-3-carboxylate 1,1-dioxide (3) was the most active MAO-B inhibitor with an IC50 value of 0.21 ± 0.01 μM. Enzyme kinetics studies revealed that the most potent compounds inhibited both MAO enzymes (A & B) in a competitive fashion. Molecular docking studies were also performed to obtain an intuitive picture of inhibition potential for potent inhibitors. The high potency of these compounds is optimally combined with highly favorable ADME profile with predicted good oral bioavailability.
  8. Lim KG, Sumera A, Venkateswaran SP, Burud IAS, Albazah NIJ
    Malays J Pathol, 2024 Apr;46(1):11-20.
    PMID: 38682841
    Lymphomas are a diverse group of malignant proliferations that arise as discrete tissue masses. The most widely accepted taxonomy for lymphoma is the World Health Organization classification of tumours of haematopoietic and lymphoid tissues, the 5th edition of which was released in June 2022. Most (85% to 90%) lymphoid neoplasms are of B cell origin. Mature B-cell neoplasms are a heterogeneous group of malignancies with similar disease courses and treatment paradigms. This review focuses on the various mature B-cell lymphomas in Malaysia, including Hodgkin lymphoma. A literature search was performed in various bibliographic databases. A total of 64 papers were included in this review. We found 15 papers on Hodgkin lymphoma, 14 on follicular lymphoma, 12 on Burkitt lymphoma, 5 on mucosa-associated lymphoid tissue (MALT) lymphoma, 4 on plasmablastic lymphoma, 3 on mantle cell lymphoma, 1 each on primary mediastinal large B-cell lymphoma, B-lymphoblastic lymphoma, and 3 on other unspecified B-cell lymphomas. The site, age, distribution, prognostic markers, and the various subclassification of B cell lymphomas were studied from these papers. Prognostic genetic markers in B-cell lymphomas include C-MYC, BCL2 and BCL6 as they are the most prevalent mutations in this condition. Anecdotal outcomes range from rapid fatality to unexplained spontaneous remission. This review adds to the existing literature on lymphoma in Malaysia by compiling the evidence that may lead to further research on the diagnosis and treatment of lymphoma in Malaysia and worldwide.
  9. Ahmad S, Jalil S, Zaib S, Aslam S, Ahmad M, Rasul A, et al.
    Eur J Pharm Sci, 2019 Apr 01;131:9-22.
    PMID: 30735822 DOI: 10.1016/j.ejps.2019.02.007
    We report the synthesis and biological evaluation of two new series of 2-amino-6-benzyl-4-phenyl-4,6-dihydrobenzo[c]pyrano[2,3-e][1,2]thiazine-3‑carbonitrile 5,5-dioxides and 2-amino-6-methyl-4-phenyl-4,6-dihydrobenzo[c]pyrano[2,3-e][1,2]thiazine-3‑carbonitrile 5,5-dioxides. The synthetic methodology involves a multistep reaction starting with methyl anthranilate which was coupled with methane sulfonyl chloride. The product of the reaction was subjected to N-benzylation and N-methylation reactions followed by ring closure with sodium hydride resulting in the formation of respective 2,1-benzothiazine 2,2-dioxides. These 2,1-benzothiazine precursors were subjected to multicomponent reaction with malononitrile and substituted benzaldehydes for the synthesis of two new series of pyranobenzothiazines (6a-r and 7a-r). The synthesized compounds were screened as selective inhibitors of monoamine oxidase A and monoamine oxidase B. The in vitro results suggested that compound 6d and 7q are the selective inhibitors of monoamine oxidase A, however, the selective and potent inhibitors of monoamine oxidase B included compounds 6h and 7r. Moreover, some dual inhibitors were noticed like 7l having more inhibitory activity towards both the isozymes. Moreover, the binding modes of the selective and potent inhibitors of monoamine oxidase A and B were investigated by molecular docking analysis. The results suggested that the synthetic derivatives may be potential towards the monoamine oxidase isozymes.
  10. Saeed M, Ilyas N, Bibi F, Shabir S, Jayachandran K, Sayyed RZ, et al.
    Chemosphere, 2023 May;324:138311.
    PMID: 36878368 DOI: 10.1016/j.chemosphere.2023.138311
    A novel kinetic model has been developed to explain the degradation of total petroleum hydrocarbons. Microbiome engineered biochar amendment may result in a synergistic impact on degradation of total petroleum hydrocarbons (TPHs). Therefore, the present study analyzed the potential of hydrocarbon-degrading bacteria A designated as Aeromonas hydrophila YL17 and B as Shewanella putrefaciens Pdp11 morphological characterized as rod shaped, anaerobic and gram-negative immobilized on biochar, and the degradation efficiency was measured by gravimetric analysis and gas chromatography-mass spectrometry (GC-MS). Whole genome sequencing of both strains revealed the existence of genes responsible for hydrocarbon degradation. In 60 days remediation setup, the treatment consisting of immobilization of both strains on biochar proved more efficient with less half-life and better biodegradation potentials compared to biochar without strains for decreasing the content of TPHs and n-alkanes (C12-C18). Enzymatic content and microbiological respiration showed that biochar acted as a soil fertilizer and carbon reservoir and enhanced microbial activities. The removal efficiency of hydrocarbons was found to be a maximum of 67% in soil samples treated with biochar immobilized with both strains (A + B), followed by biochar immobilized with strain B 34%, biochar immobilized with strain A 29% and with biochar 24%, respectively. A 39%, 36%, and 41% increase was observed in fluorescein diacetate (FDA) hydrolysis, polyphenol oxidase and dehydrogenase activities in immobilized biochar with both strains as compared to control and individual treatment of biochar and strains. An increase of 35% was observed in the respiration rate with the immobilization of both strains on biochar. While a maximum colony forming unit (CFU/g) was found 9.25 with immobilization of both strains on biochar at 40 days of remediation. The degradation efficiency was due to synergistic effect of both biochar and bacteria based amendment on the soil enzymatic activity and microbial respiration.
  11. Bibi F, Ilyas N, Saeed M, Shabir S, Shati AA, Alfaifi MY, et al.
    Environ Sci Pollut Res Int, 2023 Dec;30(60):125197-125213.
    PMID: 37482589 DOI: 10.1007/s11356-023-28765-6
    The prevalence of organic solid waste worldwide has turned into a problem that requires comprehensive treatment on all fronts. The amount of agricultural waste generated by agro-based industries has more than triplet. It not only pollutes the environment but also wastes a lot of beneficial biomass resources. These wastes may be utilized as a different option/source for the manufacturing of many goods, including biogas, biofertilizers, biofuel, mushrooms and tempeh as the primary ingredients in numerous industries. Utilizing agro-industrial wastes as good raw materials may provide cost reduction and lower environmental pollution levels. Agro-industrial wastes are converted into biofuels, enzymes, vitamin supplements, antioxidants, livestock feed, antibiotics, biofertilizers and other compounds via solid-state fermentation (SSF). By definition, SSF is a method used when there is little to no free water available. As a result, it permits the use of solid materials as biotransformation substrates. Through SSF methods, a variety of microorganisms are employed to produce these worthwhile things. SSFs are therefore reviewed and discussed along with their impact on the production of value-added items. This review will provide thorough essential details information on recycling and the use of agricultural waste.
  12. Akash M, Rana N, Aslam S, Ahmad M, Saif MJ, Asghar A, et al.
    Front Chem, 2024;12:1423385.
    PMID: 39165334 DOI: 10.3389/fchem.2024.1423385
    The urease enzyme is recognized as a valuable therapeutic agent for treating the virulent Helicobacter pylori bacterium because of its pivotal role in aiding the colonization and growth of the bacterium within the gastric mucosa. In order to control the harmful consequences of bacterial infections, urease inhibition presents itself as a promising and effective approach. The current research aimed to synthesize pyridylpiperazine-based carbodithioate derivatives 5a-5n and 7a-7n that could serve as potential drug candidates for preventing bacterial infections through urease inhibition. The synthesized carbodithioate derivatives 5a-5n and 7a-7n were explored to assess their ability to inhibit the urease enzyme after their structural explication by gas chromatography-mass spectrometry (GC-MS). In the in vitro evaluation with thiourea as a standard drug, it was observed that all the synthesized compounds exhibited significant inhibitory activity compared to the reference drug. Among the compounds tested, 5j (bearing an o-tolyl moiety) emerged as the most effective inhibitor, displaying strong urease inhibition with an IC50 value of 5.16 ± 2.68 μM. This IC50 value is notably lower than that of thiourea (23 ± 0.03 μM), indicating the significantly most potent potential of inhibition. In molecular docking of 5j within the active site of urease, numerous noteworthy interactions were identified.
  13. Mirza FJ, Zahid S, Amber S, Sumera, Jabeen H, Asim N, et al.
    Molecules, 2022 Oct 25;27(21).
    PMID: 36364071 DOI: 10.3390/molecules27217241
    Alzheimer's disease (AD) has been associated with the hallmark features of cholinergic dysfunction, amyloid beta (Aβ) aggregation and impaired synaptic transmission, which makes the associated proteins, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE I), acetylcholine esterase (AChE) and synapsin I, II and III, major targets for therapeutic intervention. The present study investigated the therapeutic potential of three major phytochemicals of Rosmarinus officinalis, ursolic acid (UA), rosmarinic acid (RA) and carnosic acid (CA), based on their binding affinity with AD-associated proteins. Detailed docking studies were conducted using AutoDock vina followed by molecular dynamic (MD) simulations using Amber 20. The docking analysis of the selected molecules showed the binding energies of their interaction with the target proteins, while MD simulations comprising root mean square deviation (RMSD), root mean square fluctuation (RMSF) and molecular mechanics/generalized born surface area (MM/GBSA) binding free energy calculations were carried out to check the stability of bound complexes. The drug likeness and the pharmacokinetic properties of the selected molecules were also checked through the Lipinski filter and ADMETSAR analysis. All these bioactive compounds demonstrated strong binding affinity with AChE, BACE1 and synapsin I, II and III. The results showed UA and RA to be potential inhibitors of AChE and BACE1, exhibiting binding energies comparable to those of donepezil, used as a positive control. The drug likeness and pharmacokinetic properties of these compounds also demonstrated drug-like characteristics, indicating the need for further in vitro and in vivo investigations to ascertain their therapeutic potential for AD.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links