Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Thu HE, Ng SF
    Int J Pharm, 2013 Sep 15;454(1):99-106.
    PMID: 23856162 DOI: 10.1016/j.ijpharm.2013.06.082
    In our previous study, a novel alginate-based bilayer film for slow-release wound dressings was successfully developed. We found that alginate alone yielded poor films; however, the addition of gelatine had significantly enhanced the drug dispersion as well as the physical properties. Here, an investigation of the drug-polymer interactions in the bilayer films was carried out. Drug content uniformity test and microscopy observation revealed that the addition of gelatine generated bilayer films with a homogenous drug distribution within the matrix. The FTIR and XRD data showed an increase in film crystallinity which might infer the presence of drug-polymer crystalline microaggregates in the films. DSC confirmed the drug-polymer interaction and indicated that the gelatine has no effect on the thermal behaviour of the microaggregates, suggesting the compatibility of the drug and excipients in the bilayer films. In conclusion, the addition of gelatine can promote homogenous dispersion of hydrophobic drugs in alginate films possibly through the formation of crystalline microaggregates.
  2. Thu HE, Zulfakar MH, Ng SF
    Int J Pharm, 2012 Sep 15;434(1-2):375-83.
    PMID: 22643226 DOI: 10.1016/j.ijpharm.2012.05.044
    The aims of this research were to develop a novel bilayer hydrocolloid film based on alginate and to investigate its potential as slow-release wound healing vehicle. The bilayer is composed of an upper layer impregnated with model drug (ibuprofen) and a drug-free lower layer, which acted as a rate-controlling membrane. The thickness uniformity, solvent loss, moisture vapour transmission rate (MVTR), hydration rate, morphology, rheology, mechanical properties, in vitro drug release and in vivo wound healing profiles were investigated. A smooth bilayer film with two homogenous distinct layers was produced. The characterisation results showed that bilayer has superior mechanical and rheological properties than the single layer films. The bilayers also showed low MVTR, slower hydration rate and lower drug flux in vitro compared to single layer inferring that bilayer may be useful for treating low suppurating wounds and suitable for slow release application on wound surfaces. The bilayers also provided a significant higher healing rate in vivo, with well-formed epidermis with faster granulation tissue formation when compared to the controls. In conclusions, a novel alginate-based bilayer hydrocolloid film was developed and results suggested that they can be exploited as slow-release wound dressings.
  3. Fang G, Zhang Q, Pang Y, Thu HE, Hussain Z
    J Control Release, 2019 06 10;303:181-208.
    PMID: 31015032 DOI: 10.1016/j.jconrel.2019.04.027
    Owing to its intricate autoimmune pathophysiology and significant risks of progression to other rheumatic co-morbidities (i.e., osteoporosis and osteoarthritis), a plausible therapeutic regimen is mandatory for early-stage management of rheumatoid arthritis (RA). Nevertheless, the conventional therapeutic agents particularly the corticosteroids and disease-modifying anti-rheumatic drugs (DMARDs) have shown grander success in the treatment of RA; however, long-term use of these agents is also associated with serious adverse events. To combat these issues and optimize therapeutic efficacy, nanotechnology-based interventions have been emerged as viable option. While, nanomedicines signposted superiority over the conventional pharmacological moieties; there are still many pharmacokinetic and pharmacodynamic challenges to nanomedicines following their intravenous or intra-articular administration. To circumvent these challenges, significant adaptations such as PEGylation, surface conjugation of targeting ligand(s), and site- responsive behavior (i.e., pH-, biochemical-, or thermal-responsiveness) have been implemented. Besides, multi-functionalization of nanomedicines has been emerging as an exceptional strategy to overcome pharmacokinetic challenges, improve targetability to inflamed synovium, maximise internalisation into the activated macrophages, and improved therapeutic outcomes for treatment of RA. Therefore, this review aims to conceptualize and recapitulate the substantial evidences regarding the pharmacokinetic and pharmacodynamic superiority of multi-functionalized nanomedicines over the naked nanomedicines for site-selective targeting to inflamed synovium and rational treatment of RA and other rheumatic co-morbidities. Pharmaceutical sustainability of the multi-functionalized nanomedicines for improved biocompatibility, profound interaction with the targeting tissue/cells/sub-cellular domain, and diminished systemic toxicity has also been pondered.
  4. Thu HE, Mohamed IN, Hussain Z, Shuid AN
    J Ethnopharmacol, 2017 Jan 04;195:143-158.
    PMID: 27818256 DOI: 10.1016/j.jep.2016.10.085
    ETHNOPHARMACOLOGICAL RELEVANCE: Eurycoma longifolia (EL) has been well-studied traditionally as a chief ingredient of many polyherbal formulations for the management of male osteoporosis. It has also been well-recognised to protect against bone calcium loss in orchidectomised rats.

    AIM OF THE STUDY: To evaluate the effects of EL on the time-mannered sequential proliferative, differentiative, and morphogenic modulation in osteoblasts compared with testosterone.

    MATERIALS AND METHODS: Cell proliferation was analysed using MTS assay and phase contrast microscopy. Osteogenic differentiation of MC3T3-E1 cells was assessed through a series of characteristic assays which include crystal violet staining, alkaline phosphatase (ALP) activity and Van Gieson staining. Taken together, the bone mineralization of extra cellular matrix (ECM) was estimated using alizarin red s (ARS) staining, von kossa staining, scanning electron microscopic (SEM) and energy dispersive x-ray (EDX) analysis.

    RESULTS: The cell proliferation data clearly revealed the efficiency of EL particularly at a dose of 25µg/mL, in improving the growth of MC3T3-E1 cells compared with the untreated cells. Data also showed the prominence of EL in significantly promoting ALP activity throughout the entire duration of treatment compared with the testosterone-treated cells. The osteogenic differentiation potential of EL was further explored by analysing mineralization data which revealed that the calcified nodule formation (calcium deposition) and phosphate deposition was more pronounced in cells treated with 25µg/mL concentration of EL at various time points compared with the untreated and testosterone treated cells. The scanning electron microscopic (SEM) analysis also revealed highest globular masses of mineral deposits (identified as white colour crystals) in the ECM of cultured cells treated with 25µg/mL concentration of EL.

    CONCLUSION: Compared to testosterone, greater potential of EL in promoting the proliferation and osteogenic differentiation of MC3T3-E1 cells provides an in vitro basis for the prevention of male osteoporosis. Thus, we anticipate that EL can be considered as an alternative approach to testosterone replacement therapy (TRT) for the treatment of male osteoporosis.

  5. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(10):1109-1126.
    PMID: 28721818 DOI: 10.2174/1389450118666170718151913
    BACKGROUND: Eurycoma longifolia is a well-documented herbal medicine that has gained widespread recognition due to its versatile pharmacological activities including anticancer, antimalarial, antimicrobial, antioxidant, aphrodisiac, anti-inflammatory, anxiolytic, anti-diabetic, antirheumatism and anti-ulcer. Plethora of in vitro and in vivo studies evidenced their excellent antiproliferative and anticancer efficacy against various types of human cancers.

    OBJECTIVE: This review was aimed to critically analyze the therapeutic viability and anticancer efficacy of Eurycoma longifolia in the treatment of cancer and also to propose its molecular and translational mechanism of cytotoxicity against cancerous cells.

    RESULTS: Among a range of medicinally active compounds isolated from various parts (roots, stem, bark and leaves) of Eurycoma longifolia, 16 compounds have shown promising anti-proliferative and anticancer efficacies. Eurycomanone, one of the most active medicinal compounds of Eurycoma longifolia, displayed a strong dose-dependent anticancer efficacy against lung carcinoma (A-549 cells) and breast cancer (MCF-7 cells); however, showed moderate efficacy against gastric (MGC-803 cells) and intestinal carcinomas (HT-29 cells). The prime mode of cytotoxicity of Eurycoma longifolia and its medicinal compounds is the induction of apoptosis (programmed cell death) via the up-regulation of the expression of p53 (tumor suppressor protein) and pro-apoptotic protein (Bax) and downregulation of the expression of anti-apoptotic protein (Bcl-2). A remarkable alleviation in the mRNA expression of various cancer-associated biomarkers including heterogeneous nuclear ribonucleoprotein (hnRNP), prohibitin (PHB), annexin-1 (ANX1) and endoplasmic reticulum protein-28 (ERp28) has also been evidenced.

    CONCLUSION: Eurycoma longifolia and its medicinal constituents exhibit promising anticancer efficacy and thus can be considered as potential complementary therapy for the treatment of various types of human cancers.

  6. Hussain Z, Thu HE, Shuid AN, Katas H, Hussain F
    Curr Drug Targets, 2018;19(5):527-550.
    PMID: 28676002 DOI: 10.2174/1389450118666170704132523
    BACKGROUND: Diabetic foot ulcers (DFUs) are the chronic, non-healing complications of diabetic mellitus which compels a significant burden to the patients and the healthcare system. Peripheral vascular disease, diabetic neuropathy, and abnormal cellular and cytokine/chemokine activity are among the prime players which exacerbate the severity and prevent wound repair. Unlike acute wounds, DFUs impose a substantial challenge to the conventional wound dressings and demand the development of novel and advanced wound healing modalities. In general, an ideal wound dressing should provide a moist wound environment, offer protection from secondary infections, eliminate wound exudate and stimulate tissue regeneration.

    OBJECTIVE: To date, numerous conventional wound dressings are employed for the management of DFUs but there is a lack of absolute and versatile choice. The current review was therefore aimed to summarize and critically discuss the available evidences related to pharmaceutical and therapeutic viability of polymer-based dressings for the treatment of DFUs.

    RESULTS: A versatile range of naturally-originated polymers including chitosan (CS), hyaluronic acid (HA), cellulose, alginate, dextran, collagen, gelatin, elastin, fibrin and silk fibroin have been utilized for the treatment of DFUs. These polymers have been used in the form of hydrogels, films, hydrocolloids, foams, membranes, scaffolds, microparticles, and nanoparticles. Moreover, the wound healing viability and clinical applicability of various mutually modified, semi-synthetic or synthetic polymers have also been critically discussed.

    CONCLUSION: In summary, this review enlightens the most recent developments in polymer-based wound dressings with special emphasis on advanced polymeric biomaterials, innovative therapeutic strategies and delivery approaches for the treatment of DFUs.

  7. Gao X, Guo L, Li J, Thu HE, Hussain Z
    J Control Release, 2018 12 28;292:29-57.
    PMID: 30359665 DOI: 10.1016/j.jconrel.2018.10.024
    Lung cancer (LC) is the second most prevalent type of cancer and primary cause of mortality among both men and women, worldwide. The most commonly employed diagnostic modalities for LC include chest X-ray (CXR), magnetic-resonance-imaging (MRI), computed tomography (CT-scan), and fused-positron-emitting-tomography-CT (PET-CT). Owing to several limitations associated with the use of conventional diagnostic tools such as radiation burden to the patient, misleading diagnosis ("missed lung cancer"), false staging and low sensitivity and resolution, contemporary diagnostic regimen needed to be employed for screening of LC. In recent decades, nanotechnology-guided interventions have been transpired as emerging nanoimaging probes for detection of LC at advanced stages, while producing signal amplification, better resolution for surface and deep tissue imaging, and enhanced translocation and biodistribution of imaging probes within the cancerous tissues. Besides enormous potential of nanoimaging probes, nanotechnology-based advancements have also been evidenced for superior efficacy for treatment of LC and abolishing pulmonary metastasis (PM). The success of nanotherapeutics is due to their ability to maximise translocation and biodistribution of anti-neoplastic agents into the tumor tissues, improve pharmacokinetic profiles of anti-metastatic agents, optimise target-specific drug delivery, and control release kinetics of encapsulated moieties in target tissues. This review aims to overview and critically discuss the superiority of nanoimaging probes and nanotherapeutics over conventional regimen for early detection of LC and abolishing PM. Current challenges to clinical transition of nanoimaging probes and therapeutic viability of nanotherapeutics for treatment for LC and PM have also been pondered.
  8. Li G, Li P, Chen Q, Thu HE, Hussain Z
    Curr Drug Deliv, 2019;16(2):94-110.
    PMID: 30360738 DOI: 10.2174/1567201815666181024142354
    BACKGROUND: Owing to their great promise in the spinal surgeries, bone graft substitutes have been widely investigated for their safety and clinical potential. By the current advances in the spinal surgery, an understanding of the precise biological mechanism of each bone graft substitute is mandatory for upholding the induction of solid spinal fusion.

    OBJECTIVE: The aim of the present review is to critically discuss various surgical implications and level of evidence of most commonly employed bone graft substitutes for spinal fusion.

    METHOD: Data was collected via electronic search using "PubMed", "SciFinder", "ScienceDirect", "Google Scholar", "Web of Science" and a library search for articles published in peer-reviewed journals, conferences, and e-books.

    RESULTS: Despite having exceptional inherent osteogenic, osteoinductive, and osteoconductive features, clinical acceptability of autografts (patient's own bone) is limited due to several perioperative and postoperative complications i.e., donor-site morbidities and limited graft supply. Alternatively, allografts (bone harvested from cadaver) have shown great promise in achieving acceptable bone fusion rate while alleviating the donor-site morbidities associated with implantation of autografts. As an adjuvant to allograft, demineralized bone matrix (DBM) has shown remarkable efficacy of bone fusion, when employed as graft extender or graft enhancer. Recent advances in recombinant technologies have made it possible to implant growth and differentiation factors (bone morphogenetic proteins) for spinal fusion.

    CONCLUSION: Selection of a particular bone grafting biotherapy can be rationalized based on the level of spine fusion, clinical experience and preference of orthopaedic surgeon, and prevalence of donor-site morbidities.

  9. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    J Ayurveda Integr Med, 2018 08 16;10(2):102-110.
    PMID: 30120052 DOI: 10.1016/j.jaim.2017.07.014
    BACKGROUND: Eurycoma longifolia (E. longifolia) has gained remarkable recognition due to its promising efficacy of stimulating bone formation in androgen-deficient osteoporosis. Numerous in vivo studies have explored the effects of E. longifolia on osteoporosis; however, the in vitro cellular mechanism was not discovered yet.

    OBJECTIVES: The present study was aimed to investigate the effect of E. longifolia on the proliferation, differentiation and maturation of osteoclasts and the translational mechanism of inhibition of osteoclastogenesis using RAW 264.7 cells as an in vitro osteoclastic model.

    MATERIALS AND METHODS: Having assessed cytotoxicity, the cell viability, cell proliferation rate and osteoclastic differentiation capacity of E. longifolia was investigated by evaluating the tartrate-resistant acid phosphatase (TRAP) activity in receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclasts. Taken together, the time-mannered expression of osteoclast-related protein biomarkers such as matrix metallopeptidase-9 (MMP-9), cathepsin-K, TRAP, nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), superoxide (free radicals) generation and superoxide dismutase activity were also measured to comprehend the mechanism of osteoclastogenesis.

    RESULTS: E. longifolia did not show significant effects on cytotoxicity and cell proliferation of RAW 264.7 cells; however, a significant inhibition of cells differentiation and maturation of osteoclasts was observed. Moreover, a significant down-regulation of RANKL-induced TRAP activity and expression of MMP-9, cathepsin-K, TRAP, NFATc1 and generation of superoxide and enhanced superoxide dismutase activity was observed in E. longifolia treated cell cultures.

    CONCLUSION: We anticipated that E. longifolia that enhances bone regeneration on the one hand and suppresses osteoclast's maturation on the other hand may have great therapeutic value in treating osteoporosis and other bone-erosive diseases such as rheumatoid arthritis and metastasis associated with bone loss.

  10. Bukhari SNA, Hussain F, Thu HE, Hussain Z
    J Integr Med, 2019 Jan;17(1):38-45.
    PMID: 30139656 DOI: 10.1016/j.joim.2018.08.003
    OBJECTIVE: The present study explored the effects of the combined herbal therapy consisting of curcumin (CUR) and Fructus Ligustri Lucidi (FLL) on aspects of bone regeneration.

    METHODS: Prior to analyzing the ability of this novel combined herbal therapy to promote aspects of bone regeneration, its cytotoxicity was determined using MC3T3-E1 cells (pre-osteoblast model). Cell proliferation was evaluated using phase-contrast microscopy and cell differentiation was estimated using alkaline phosphatase activity. The effect of the combined herbal therapy (CUR + FLL) was also assessed in terms of mineralization in the extracellular matrix (ECM) of cultured cells. Further, to explore the molecular mechanisms of bone formation, time-dependent expression of bone-regulating protein biomarkers was also evaluated.

    RESULTS: Combined herbal therapy (CUR + FLL) significantly upregulated the viability, proliferation and differentiation of MC3T3-E1 cells compared to the monotherapy of CUR or FLL. The magnitude of ECM mineralization (calcium deposition) was also higher in MC3T3-E1 cells treated with combined therapy. The time-dependent expression of bone-forming protein biomarkers revealed that the tendency of expression of these bone-regulating proteins was remarkably higher in cells treated with combined therapy.

    CONCLUSION: The co-administration of CUR and FLL had superior promotion of elements of bone regeneration in cultured cells, thus could be a promising alternative herbal therapy for the management of bone erosive disorders such as osteoporosis.

  11. Thu HE, Mohamed IN, Hussain Z, Shuid AN
    Iran J Basic Med Sci, 2017 Aug;20(8):894-904.
    PMID: 29085581 DOI: 10.22038/IJBMS.2017.9111
    OBJECTIVES: The present study was aimed to evaluate the time-mannered and dose-dependent effects of 5α-dihydrotestosterone (5α-DHT) on the proliferation and differentiation of bone forming cells using MC3T3-E1 cells.

    MATERIALS AND METHODS: Cell proliferation was analyzed using MTS and phase contrast microscopic assays. Osteogenic differentiation was assessed through a series of in vitro experiments including crystal violet staining, alkaline phosphatase (ALP) activity, and Van Gieson (VG) staining. Taken together, the efficiency of bone mineralization was examined by using alizarin red s (ARS) staining, Von Kossa staining, scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) analysis.

    RESULTS: The resulting data revealed that 5α-DHT exhibits promising potential particularly at a dose of 0.1 ng/ml, in promoting the growth of MC3T3-E1 cells compared to the control group (CN). Moreover, a significantly higher ALP activity was evident in the experimental group treated with 5α-DHT compared to the CN group at various time intervals. MC3T3-E1 cells treated with 5α-DHT also expressed a remarkably higher collagen deposition and mineralization (calcium and phosphate contents) compared to the CN group at various time intervals.

    CONCLUSION: Conclusively, we suggest that 5α-DHT exhibits outstanding potential of promoting proliferation and differentiation in osteoblasts which could be the in vitro basis for the efficacy of 5α-DHT in the treatment of androgen-deficient male osteoporosis.

  12. Thu HE, Mohamed IN, Hussain Z, Shuid AN
    J Ayurveda Integr Med, 2017 11 13;9(4):272-280.
    PMID: 29146110 DOI: 10.1016/j.jaim.2017.04.005
    BACKGROUND: Among the numerous well-documented medicinal herbs, Eurycoma longifolia (EL) has gained remarkable recognition due to its promising efficacy of stimulating bone formation in androgen-deficient osteoporosis. Though numerous animal studies have explored the bone-forming capacity of EL, the exact mechanism was yet to be explored.

    OBJECTIVE(S): The present study was aimed to investigate the mechanism of bone-forming capacity of EL using MC3T3-E1 as an in vitro osteoblastic model.

    MATERIALS AND METHODS: The cell differentiation capacity of EL was investigated by evaluating cell growth, alkaline phosphatase (ALP) activity, collagen deposition and mineralization. Taken together, time-mannered expression of bone-related mediators which include bone morphogenic protein-2 (BMP-2), ALP, runt-related transcription factor-2 (Runx-2), osteocalcin (OCN), type I collagen, osteopontin (OPN), transforming growth factor-β1 (TGF-β1) and androgen receptor (AR) were measured to comprehend bone-forming mechanism of EL.

    RESULTS: Results demonstrated a superior cell differentiation efficacy of EL (particularly at a dose of 25 μg/mL) that was evidenced by dramatically increased cell growth, higher ALP activity, collagen deposition and mineralization compared to the testosterone. Results analysis of the bone-related protein biomarkers indicated that the expression of these mediators was well-regulated in EL-treated cell cultures compared to the control groups. These findings revealed potential molecular mechanism of EL for the prevention and treatment of male osteoporosis.

    CONCLUSION: The resulting data suggested that EL exhibited superior efficacy in stimulating bone formation via up-regulating the expression of various mitogenic proteins and thus can be considered as a potential natural alternative therapy for the treatment of osteoporosis.

  13. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(14):1657-1671.
    PMID: 29468964 DOI: 10.2174/1389450119666180219123815
    BACKGROUND: Eurycoma longifolia (E. longifolia) has gained widespread recognition due to its versatile pharmacological activities including aphrodisiac, anticancer, antimicrobial, antioxidant, anti-inflammatory, anxiolytic, anti-diabetic, ergogenic, insecticidal, anti-rheumatism, bone protection, and anti-ulcer effects.

    OBJECTIVE: This review was aimed to critically overview the literature and summarizes the antibacterial, antiprotozoal, and antifungal trends of E. longifolia and its medicinally active components.

    RESULTS: Besides its well-documented safety, efficacy, and tolerability, a plethora of in vitro, in vivo, and human clinical studies has evidenced the antimicrobial efficacy of E. longifolia and its bioactive constituents. Phytochemical screening of various types of extracts (methanolic, ethyl acetate, and nbutanolic) from different parts (roots, stem, and leaves) of E. longifolia displayed a dose-dependent antibacterial, antiprotozoal, and antifungal responses. Comparative analysis revealed that the root extract of E. longifolia exhibited the highest antimicrobial efficacy compared to other parts of the plant. Bioactivity-guided fractionation identified that among all of the medicinal compounds isolated/ extracted from different parts of E. longifolia, eurycomanone displayed the strongest antibacterial, antiprotozoal and antifungal activities.

    CONCLUSION: Based on the critical analysis of the literature, we identified that E. longifolia exhibits promising antibacterial, antiprotozoal, and antifungal efficacies against various pathogenic microbes and thus can be considered as a potential complementary and alternative antimicrobial therapy.

  14. Hussain Z, Thu HE, Ng SF, Khan S, Katas H
    Colloids Surf B Biointerfaces, 2017 Feb 01;150:223-241.
    PMID: 27918967 DOI: 10.1016/j.colsurfb.2016.11.036
    Wound healing is a multifarious and vibrant process of replacing devitalized and damaged cellular structures, leading to restoration of the skin's barrier function, re-establishment of tissue integrity, and maintenance of the internal homeostasis. Curcumin (CUR) and its analogs have gained widespread recognition due to their remarkable anti-inflammatory, anti-infective, anticancer, immunomodulatory, antioxidant, and wound healing activities. However, their pharmaceutical significance is limited due to inherent hydrophobic nature, poor water solubility, low bioavailability, chemical instability, rapid metabolism and short half-life. Owing to their pharmaceutical limitations, newer strategies have been attempted in recent years aiming to mitigate problems related to the effective delivery of curcumanoids and to improve their wound healing potential. These advanced strategies include nanovesicles, polymeric micelles, conventional liposomes and hyalurosomes, nanocomposite hydrogels, electrospun nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, nanodispersion, and polymeric nanoparticles (NPs). The superior wound healing activities achieved after nanoencapsulation of the CUR are attributed to its target-specific delivery, longer retention at the target site, avoiding premature degradation of the encapsulated cargo and the therapeutic superiority of the advanced delivery systems over the conventional delivery. We have critically reviewed the literature and summarize the convincing evidence which explore the pharmaceutical significance and therapeutic feasibility of the advanced delivery systems in improving wound healing activities of the CUR and its analogs.
  15. Rehman U, Sarfraz RM, Mahmood A, Hussain Z, Thu HE, Zafar N, et al.
    Curr Drug Deliv, 2021 Feb 11.
    PMID: 33583374 DOI: 10.2174/1567201818666210212085912
    BACKGROUND: Despite exhibiting promising anticancer potential, the clinical significance of capecitabine (a potent prodrug of 5-fluorouracil used for treatment of colorectal cancer) is limited owing to its acidic and enzymatic hydrolysis, lower absorption following the oral administration, poor bioavailability, short plasma half-life and poor patient compliance.

    OBJECTIVES: The present study was aimed to fabricate the capecitabine as smart pH-responsive hydrogel network to efficiently facilitate its oral delivery while shielding its stability in the gastric media.

    METHODS: The smart pH sensitive HP-β-CD/agarose-g-poly(MAA) hydrogel network was developed using an aqueous free radical polymerization technique. The developed hydrogels were characterized for drug-loading efficiency, structural and compositional features, thermal stability, swelling behaviour, morphology, physical form, and release kinetics. The pH-responsive behaviour of developed hydrogels was established by conducting the swelling and release behaviour at different pH values (1.2 and 7.4), demonstrating significantly higher swelling and release at pH 7.4 as compared with pH 1.2. The capecitabine-loaded hydrogels were also screened for acute oral toxicity in animals by analysing the body weight, water and food intake, dermal toxicity, ocular toxicity, biochemical analysis, and histological examination.

    RESULTS: The characteristic evaluations revealed that capecitabine (anticancer agent) was successfully loaded into the hydrogel network. Capecitabine loading was ranged from 71.22% to 90.12%. An interesting feature of hydrogel was its pH-responsive behaviour which triggers release at basic pH (94.25%). Optimum swelling (95%) was seen at pH 7.4. Based upon regression coefficient R2 (0.96 - 0.99) best fit model was zero order. The extensive toxicity evaluations evidenced good safety profile with no signs of oral, dermal or ocular toxicities, as well as no variations in blood parameters and histology of vital organs.

    CONCLUSION: Our findings conclusively evinced that the developed hydrogel exhibited excellent pharmaceutical and therapeutic potential and thus can be employed as pH-responsive system for controlled delivery of anticancer agents.

  16. Chen LH, Xue JF, Zheng ZY, Shuhaidi M, Thu HE, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:572-584.
    PMID: 29772338 DOI: 10.1016/j.ijbiomac.2018.05.068
    Hyaluronic acid (HA) plays multifaceted role in regulating various biological processes and maintaining homeostasis into the body. Numerous researches evidenced the biomedical implications of HA in skin repairmen, cancer prognosis, wound healing, tissue regeneration, anti-inflammatory, immunomodulation. The present review was aimed to summarize and critically appraise the recent developments and efficacy of HA for treatment of inflammatory skin and joint diseases. A thorough analysis of the literature revealed that HA based formulations (i.e., gels, creams, autologous graft, thin sheets, soaked gauze, gauze pad, tincture, injection) have shown remarkable efficacy in treating a wide range of inflammatory skin diseases. The safety, tolerability, and efficacy of HA (as intra-articular injection) have also been well-documented for treatment of various types of joint disease including knee osteoarthritic, joint osteoarthritis, canine osteoarthritis, and meniscal swelling. Intra-articular injection of HA produces remarkable reduction in joint pain, synovial inflammation, and articular swelling. A remarkable improvement in chondrocyte density, territorial matrix appearance, reconstitution of superficial amorphous layer of the cartilage, collagen remodelling, and regeneration of meniscus have also been evident in patients treated with HA. Conclusively, we validate that the application/administration of HA is a promising pharmacotherapeutic regimen for treatment of inflammatory skin and joint diseases.
  17. Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S
    Mater Sci Eng C Mater Biol Appl, 2017 Aug 01;77:1316-1326.
    PMID: 28532009 DOI: 10.1016/j.msec.2017.03.226
    Curcumin derivatives have been well-documented due to their natural antioxidant, antimicrobial and anti-inflammatory activities. Curcuminoids have also gained widespread recognition due to their wide range of other activities which include anti-infective, anti-mutagenic, anticancer, anti-coagulant, antiarthrititc, and wound healing potential. Despite of having a wide range of activities, the inherent physicochemical characteristics (poor water solubility, low bioavailability, chemical instability, photodegradation, rapid metabolism and short half-life) of curcumin derivatives limit their pharmaceutical significance. Aiming to overcome these pharmaceutical issues and improving therapeutic efficacy of curcuminoids, newer strategies have been attempted in recent years. These advanced techniques include polymeric nanoparticles, nanocomposite hydrogels, nanovesicles, nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, polymeric micelles and polymeric blend films. Incorporation of curcumin in these delivery systems has shown improved solubility, transmembrane permeability, long-term stability, improved bioavailability, longer plasma half-life, target-specific delivery, and upgraded therapeutic efficacy. In this review, a range of in vitro and in vivo studies have been critically discussed to explore the pharmaceutical significance and therapeutic viability of the advanced delivery systems to improve antioxidant, anti-inflammatory and antimicrobial efficacies of curcumin and its derivatives.
  18. Hussain Z, Thu HE, Shuid AN, Kesharwani P, Khan S, Hussain F
    Biomed Pharmacother, 2017 Sep;93:596-608.
    PMID: 28686974 DOI: 10.1016/j.biopha.2017.06.087
    For many decades, natural herbal medicines, polyherbal formulations and/or decoctions of plant-derived materials have widely been accepted as alternative complementary therapies for the treatment, cure or prevention of a wide range of acute and chronic skin diseases including chronic herpes, prurigo, acute and chronic wounds, psoriasis and atopic dermatitis (AD). This review was aimed to summarize and critically discuss about the therapeutic viability and clinical applicability of natural herbal medicines for the treatment of AD in human. The critical analysis of the literature revealed that oral (in the form of capsules, syrup or granules) and/or topical application (alone or in conjunction with wet-wrap dressing and/or acupuncture) of natural herbal medicines exhibit remarkable potential for the treatment of mild-to-severe AD in adults, children, infants and in the pregnant women. In this review, the clinical efficacy of various herbal formulations such as Chinese herbal therapies, Korean medicines, Iranian medicines, honey, natural herbal oils (coconut oil, olive oil and mineral oil), beeswax, dodder seeds and whey for the treatment of AD has been discussed. The clinical anti-AD efficacy of these complementary therapies has been observed in terms of down-regulation in Scoring Atopic Dermatitis (SCORAD) index, erythematic intensity, Children's Dermatology Life Quality Index (CDLQI), Dermatology Life Quality Index (DLQI), pruritus and itching frequency, transepidermal water loss (TEWL) and expression of AD-mediated chemokines. Conclusively, we recognized that natural herbal medicines demonstrate remarkable clinical efficacy when used alone or in conjunction with other complementary therapies for the treatment of AD in patients of all ages as well as pregnant women.
  19. Thu HE, Mohamed IN, Hussain Z, Jayusman PA, Shuid AN
    Chin J Nat Med, 2017 Jan;15(1):71-80.
    PMID: 28259255 DOI: 10.1016/S1875-5364(17)30010-9
    Eurycoma longifolia (EL) has been well recognized as a booster of male sexual health. Over the past few decades, numerous in vivo animal studies and human clinical trials have been conducted across the globe to explore the promising role of EL in managing various male sexual disorders, which include erectile dysfunction, male infertility, low libido, and downregulated testosterone levels. The aim of the present review is to analyze and summarize the literature on human clinical trials which revealed the clinical significance and therapeutic feasibility of EL in improving male sexual health. This systematic review is focused on the following databases: Medline, Wiley Online Library, BioMed Central, Hindawi, Web of Knowledge, PubMed Central and Google Scholar, using search terms such as "Eurycoma longifolia", "EL", "Tongkat Ali", "male sexual health", "sexual infertility", "erectile dysfunction", "male libido", and "testosterone levels". Notably, only human clinical studies published between 2000 and 2014 were selected and thoroughly reviewed for relevant citations. Out of 150 articles, 11 met the inclusion criteria. The majority of articles included were randomized placebo-controlled trials, multiple cohort studies, or pilot trials. All these studies demonstrated considerable effects of EL on male sexual health disorders. Among them, 7 studies revealed remarkable association between the use of EL and the efficacy in the treatment of male sexual disorders, and remaining 4 studies failed to demonstrate sufficient effects on male sexual health. In summary, there is convincing evidence for the prominence of EL in improving the male sexual health. The review also substantiates the use of current methodology in the development of novel and more rationale natural herbal medicines for the management of male sexual disorders.
  20. Moti LAA, Hussain Z, Thu HE, Khan S, Sohail M, Sarfraz RM
    Curr Pharm Des, 2021;27(43):4356-4375.
    PMID: 34459374 DOI: 10.2174/1381612827666210830092539
    BACKGROUND: Breast cancer (BC) is one of the most aggressive and prevalent types of cancer, which is associated with a high rate of mortality and colossal potential of metastasis to other body organs. Conventionally, there are three commonly employed strategies for the treatment of BC including, surgery, radiations and chemotherapy; however, these modalities are associated with several deleterious effects and a high rate of relapse.

    OBJECTIVE: This review was aimed to critically discuss and conceptualize existing evidences related to the pharmaceutical significance and therapeutic feasibility of multi-functionalization of nanomedicines for early diagnosis and efficient treatment of BC.

    RESULTS: Though the implication of nanotechnology-based modalities has revolutionised the outcomes of diagnosis and treatment of BC; however, the clinical translation of these nanomedicines is facing grandeur challenges. These challenges include recognition by the reticuloendothelial system (RES), short plasma half-life, non-specific accumulation in the non-cancerous cells, and expulsion of the drug(s) by the efflux pump. To circumvent these challenges, various adaptations such as PEGylation, conjugation of targeting ligand(s), and siteresponsive behaviour (i.e., pH-responsiveness, biochemical, or thermal-responsiveness) have been adapted. Similarly, multi-functionalization of nanomedicines has emerged as an exceptional strategy to improve the pharmacokinetic profile, specific targetability to the tumor microenvironment (active targeting) and efficient internalization, and to alleviate the expulsion of internalized drug contents by silencing-off efflux pump.

    CONCLUSION: Critical analysis of the available evidences revealed that multi-functionalization of nanomedicines is a plausible and sustainable adaptation for early diagnosis and treatment of BC with better therapeutic outcomes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links