Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Ullah S, Zainol I, Idrus RH
    Int J Biol Macromol, 2017 Nov;104(Pt A):1020-1029.
    PMID: 28668615 DOI: 10.1016/j.ijbiomac.2017.06.080
    The zinc oxide nanoparticles (particles size <50nm) incorporated into chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds.
  2. Ullah S, Majeed MT, Chishti MZ
    Environ Sci Pollut Res Int, 2020 Oct;27(30):38287-38299.
    PMID: 32623670 DOI: 10.1007/s11356-020-09859-x
    Empirical studies pertaining to the effects of fiscal policy instruments on environmental quality have provided mixed evidence. We consider the asymmetric effects of fiscal policy instruments on environmental quality for the top ten Asian carbon emitters over the period 1981-2018. We go beyond the literature and claim that the effects could be asymmetric. More specifically, we found that a positive shock in government expenditure will worsen environmental quality in Malaysia, UAE, Thailand, Indonesia, Turkey, Iran, India, and China, and improve it in Japan. On the other hand, we found that cutting government expenditure will improve environmental quality in these economies and will worsen only in Japan. Moreover, a higher government income tax revenue uniquely increases the government's spending that increases the carbon emissions in Malaysia, UAE, Thailand, Indonesia, Turkey, Iran, India, and China, and decrease in Japan. The negative shock of government revenue has adverse results on carbon emissions in these economies. However, short-run asymmetric effects translate to long-run effects in most Asian economies.
  3. Ullah S, Zainol I, Chowdhury SR, Fauzi MB
    Int J Biol Macromol, 2018 May;111:158-168.
    PMID: 29305219 DOI: 10.1016/j.ijbiomac.2017.12.136
    The various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds were developed and investigated the effect of various composition chitosan/fish collagen/glycerin on scaffolds morphology, mechanical strength, biostability and cytocompatibility. The scaffolds were fabricated via freeze-drying technique. The effects of various compositions consisting in 3D scaffolds were investigated via FT-IR analysis, porosity, swelling and mechanical tests, and effect on the morphology of scaffolds investigated microscopically. The biostability and cytocompatibility tests were used to explore the ability of scaffolds to use for tissue engineering application. The average pore sizes of scaffolds were in range of 100.73±27.62-116.01±52.06, porosity 71.72±3.46-91.17±2.42%, tensile modulus in dry environment 1.47±0.08-0.17±0.03MPa, tensile modulus in wet environment 0.32±0.03-0.14±0.04MPa and biodegradation rate (at day 30) 60.38±0.70-83.48±0.28%. In vitro culture of human fibroblasts and keratinocytes showed that the various composition multicomponent 3D scaffolds were good cytocompatibility however, the scaffolds contained high amount of fish collagen excellently facilitated cell proliferation and adhesion. It was found that the high amount fish collagen and glycerin scaffolds have high porosity, enough mechanical strength and biostability, and excellent cytocompatibility.
  4. Ali M, Ullah S, Ahmad MS, Cheok MY, Alenezi H
    Environ Sci Pollut Res Int, 2023 Feb;30(9):23335-23347.
    PMID: 36322356 DOI: 10.1007/s11356-022-23811-1
    Social media is playing a vital role in the promotion of green products by reshaping the millennial green purchasing intention and green consumption behaviors, resulting in progressive growth toward sustainable environment and lower carbon emission. Non-organic consumption among humans has increased the carbon emission in contrary risked environment; therefore, consumption behavior and purchasing intention are required to change for better sustainable environment. This study's goal is to determine the effects of social media in molding the consumption behaviors while considering eco-labeling, eco-branding, social norms, and purchase intensions among millennials to promote green consumption and lower carbon emission. It was decided to use a cross-sectional questionnaire survey to get information from the students of different faculties including social sciences, engineering, and bio-sciences. SPSS.V.22 and Smart-PLS were used to analyzed the data. Results indicated that social media has a profoundly good impact on molding and impacting youth behaviors regarding the green consumption, resulting in increasing intention toward sustainable environment which results in lower carbon emission. The results are in line with the predictions and contextual analysis, as the whole world is coming back toward natural life and is working for environmental protection and sustainability specially to lower the carbon emission. Therefore, students are molding themselves toward green consumption. The study recommends that future research may be conducted to study more contextual variables, who has influence on the green consumption among the general public regarding green consumptions and lowering carbon emission and stepping toward the sustainable environment.
  5. Khan SU, Khan F, Ullah S, YoungmoonLee, Sami ulQudoos, Lee B
    Heliyon, 2023 Jun;9(6):e17334.
    PMID: 37416636 DOI: 10.1016/j.heliyon.2023.e17334
    For the past 25 years, medical imaging has been extensively used for clinical diagnosis. The main difficulties in medicine are accurate disease recognition and improved therapy. Using a single imaging modality to diagnose disease is challenging for clinical personnel. In this paper, a novel structural and spectral feature enhancement method in NSST Domain for multimodal medical image fusion (MMIF) is proposed. Initially, the proposed method uses the Intensity, Hue, Saturation (IHS) method to generate two pairs of images. The input images are then decomposed using the Non-Subsampled Shearlet Transform (NSST) method to obtain low frequency and high frequency sub-bands. Next, a proposed Structural Information (SI) fusion strategy is employed to Low Frequency Sub-bands (LFS's). It will enhance the structural (texture, background) information. Then, Principal Component Analysis (PCA) is employed as a fusion rule to High Frequency Sub-bands (HFS's) to obtain the pixel level information. Finally, the fused final image is obtained by employing inverse NSST and IHS. The proposed algorithm was validated using different modalities containing 120 image pairs. The qualitative and quantitative results demonstrated that the algorithm proposed in this research work outperformed numerous state-of-the-art MMIF approaches.
  6. Ullah S, Daud H, Dass SC, Fanaee-T H, Khalil A
    PLoS One, 2018;13(6):e0199176.
    PMID: 29920540 DOI: 10.1371/journal.pone.0199176
    Identifying the abnormally high-risk regions in a spatiotemporal space that contains an unexpected disease count is helpful to conduct surveillance and implement control strategies. The EigenSpot algorithm has been recently proposed for detecting space-time disease clusters of arbitrary shapes with no restriction on the distribution and quality of the data, and has shown some promising advantages over the state-of-the-art methods. However, the main problem with the EigenSpot method is that it cannot be adapted to detect more than one spatiotemporal hotspot. This is an important limitation, since, in reality, we may have multiple hotspots, sometimes at the same level of importance. We propose an extension of the EigenSpot algorithm, called Multi-EigenSpot that is able to handle multiple hotspots by iteratively removing previously detected hotspots and re-running the algorithm until no more hotspots are found. In addition, a visualization tool (heatmap) has been linked to the proposed algorithm to visualize multiple clusters with different colors. We evaluated the proposed method using the monthly data on measles cases in Khyber-Pakhtunkhwa, Pakistan (Jan 2016- Dec 2016), and the efficiency was compared with the state-of-the-art methods: EigenSpot and Space-time scan statistic (SaTScan). The results showed the effectiveness of the proposed method for detecting multiple clusters in a spatiotemporal space.
  7. Ullah S, Bustam MA, Nadeem M, Naz MY, Tan WL, Shariff AM
    ScientificWorldJournal, 2014;2014:940502.
    PMID: 25436237 DOI: 10.1155/2014/940502
    Melamine formaldehyde (MF) resins have been synthesized at different reaction temperature and pH values. Different molar ratios of melamine and formaldehyde were used to synthesize the corresponding resins. The prepared resin samples were characterized by using molecular weight determination viscometry and thermogravimetric analysis (TGA). The maximum percentage of solid content (69.7%) was obtained at pH 8.5 and 75°C temperature. The molecular weight of MF resin was increased with an increase of melamine monomer concentration. The highest residual weight 14.125 wt.% was obtained with sample 10.
  8. Ashraf MA, Ullah S, Ahmad I, Qureshi AK, Balkhair KS, Abdur Rehman M
    J Sci Food Agric, 2014 Feb;94(3):388-403.
    PMID: 23983055 DOI: 10.1002/jsfa.6371
    The study of biofilms has skyrocketed in recent years due to increased awareness of the pervasiveness and impact of biofilms. It costs the USA literally billions of dollars every year in energy losses, equipment damage, product contamination and medical infections. But biofilms also offer huge potential for cleaning up hazardous waste sites, filtering municipal and industrial water and wastewater, and forming biobarriers to protect soil and groundwater from contamination. The complexity of biofilm activity and behavior requires research contributions from many disciplines such as biochemistry, engineering, mathematics and microbiology. The aim of this review is to provide a comprehensive analysis of emerging novel antimicrobial techniques, including those using myriad organic and inorganic products as well as genetic engineering techniques, the use of coordination complex molecules, composite materials and antimicrobial peptides and the use of lasers as such or their modified use in combination treatments. This review also addresses advanced and recent modifications, including methodological changes, and biocide efficacy enhancing strategies. This review will provide future planners of biofilm control technologies with a broad understanding and perspective on the use of biocides in the field of green developments for a sustainable future.
  9. Babar M, Mubashir M, Mukhtar A, Saqib S, Ullah S, Bustam MA, et al.
    Environ Pollut, 2021 Jun 15;279:116924.
    PMID: 33751951 DOI: 10.1016/j.envpol.2021.116924
    In this study, a sustainable NH2-MIL-101(Al) is synthesized and subjected to characterization for cryogenic CO2 adsorption, isotherms, and thermodynamic study. The morphology revealed a highly porous surface. The XRD showed that NH2-MIL-101(Al) was crystalline. The NH2-MIL-101(Al) decomposes at a temperature (>500 °C) indicating excellent thermal stability. The BET investigation revealed the specific surface area of 2530 m2/g and the pore volume of 1.32 cm3/g. The CO2 adsorption capacity was found to be 9.55 wt% to 2.31 wt% within the investigated temperature range. The isotherms revealed the availability of adsorption sites with favorable adsorption at lower temperatures indicating the thermodynamically controlled process. The thermodynamics showed that the process is non-spontaneous, endothermic, with fewer disorders, chemisorption. Finally, the breakthrough time of NH2-MIL-101(Al) is 31.25% more than spherical glass beads. The CO2 captured by the particles was 2.29 kg m-3. The CO2 capture using glass packing was 121% less than NH2-MIL-101(Al) under similar conditions of temperature and pressure.
  10. Khan B, Kamal B, Ullah S, Khan I, Shah JA, Chen J
    Sci Rep, 2020 Sep 21;10(1):15393.
    PMID: 32958835 DOI: 10.1038/s41598-020-71959-y
    The manipulation of polarization state of electromagnetic waves is of great importance in many practical applications. In this paper, the reflection characteristics of a thin and dual-band metasurface are examined in the microwave frequency regime. The metasurface consists of a 22 × 22 element array of periodic unit cells. The geometry of the unit cell consists of three layers, including a 45° inclined dipole shape metal patch on top, which is backed by a 1.6 mm thick FR-4 substrate in the middle, and a fully reflective metallic mirror at the bottom. The proposed surface is exposed to horizontally (x) or vertically (y) polarized plane waves and the co and cross polarization reflection coefficients of the reflected waves are investigated experimentally in the 6-26 GHz frequency range. The metasurface is designed to convert incident waves of known polarization state (horizontal or vertical) to orthogonal polarization state (vertical and horizontal) in two distinct frequency bands, i.e. 7.1-8 GHz and 13.3-25.8 GHz. In these two frequency bands the simulated and experimental results are in good agreement. The polarization conversion ratio (PCR) of the surface is greater than 95% in the targeted frequency bands. A detailed parametric analysis of the metasurface is also discussed in this work and it has been estimated that the surface has the additional ability to convert linearly polarized waves to circularly polarized waves at several distinct frequencies. The proposed metasurface can be utilized in sensor applications, stealth technology, electromagnetic measurements, and antennas design.
  11. Ullah S, Daud H, Dass SC, Fanaee-T H, Kausarian H, Khalil A
    PMID: 32098247 DOI: 10.3390/ijerph17041413
    The number of tuberculosis (TB) cases in Pakistan ranks fifth in the world. The National TB Control Program (NTP) has recently reported more than 462,920 TB patients in Khyber Pakhtunkhwa province, Pakistan from 2002 to 2017. This study aims to identify spatial and space-time clusters of TB cases in Khyber Pakhtunkhwa province Pakistan during 2015-2019 to design effective interventions. The spatial and space-time cluster analyses were conducted at the district-level based on the reported TB cases from January 2015 to April 2019 using space-time scan statistics (SaTScan). The most likely spatial and space-time clusters were detected in the northern rural part of the province. Additionally, two districts in the west were detected as the secondary space-time clusters. The most likely space-time cluster shows a tendency of spread toward the neighboring districts in the central part, and the most likely spatial cluster shows a tendency of spread toward the neighboring districts in the south. Most of the space-time clusters were detected at the start of the study period 2015-2016. The potential TB clusters in the remote rural part might be associated to the dry-cool climate and lack of access to the healthcare centers in the remote areas.
  12. Ullah S, Khan MF, Shah SAA, Farooq M, Khan MA, Mamat MB
    Eur Phys J Plus, 2020;135(10):839.
    PMID: 33101826 DOI: 10.1140/epjp/s13360-020-00855-1
    Vector-host infectious diseases remain a challenging issue and cause millions of deaths each year globally. In such outbreaks, many countries especially developing or underdevelopment faces a situation where the number of infected individuals is getting larger and the medical facilities are limited. In this paper, we construct an epidemic model to explore the transmission dynamics of vector-borne diseases with nonlinear saturated incidence rate and saturated treatment function. This type of incidence rate, as well as the saturated treatment function, is also known as the Holling type II form and describes the effect of delayed treatment. Initially, we formulate a mathematical model and then present the basic analysis of the model including the positivity and boundedness of the solution. The threshold quantity R 0 is presented and the stability analysis of the system is carried out for the model equilibria. The global stability results are shown using the Lyapunov function of Goh-Voltera type. The existence of backward bifurcation is discussed using the central manifold theory. Further, the global sensitivity analysis of the model is carried out using the Latin Hypercube sampling and the partial rank correlation coefficient techniques. Moreover, an optimal control problem is formulated and the necessary optimality conditions are investigated in order to eradicate the disease in a community. Four strategies are presented by choosing different set of controls combination for the disease minimization. Finally, the numerical simulations of each strategy are depicted to demonstrate the importance of suggesting control interventions on the disease dynamics and eradication.
  13. Qasim M, Ayoub M, Aqsha A, Ghazali NA, Ullah S, Ando Y, et al.
    ACS Omega, 2022 Nov 15;7(45):40789-40798.
    PMID: 36406530 DOI: 10.1021/acsomega.2c02993
    CO2 levels in the atmosphere are growing as a result of the burning of fossil fuels to meet energy demands. The introduction of chemical looping combustion (CLC) as an alternative to traditional combustion by transporting oxygen emphasizes the need to develop greener and more economical energy systems. Metal oxide, also defined as an oxygen carrier (OC), transports oxygen from the air to the fuel. Several attempts are being made to develop an OC with a reasonable material cost for superior fuel conversion and high oxygen transport capacity (OTC). This study aims to synthesize a potential OC using the wet impregnation method for the CLC process. Thermogravimetric analysis (TGA) was used to determine the cyclic redox properties using 5% CH4/N2 and air as reducing and oxidizing gases, respectively. The 10CuPA-based OC retained a high OTC of about 0.0267 mg O2/mg of OC for 10 cycles that was higher than 10CuA-based OC. Furthermore, the oxygen transfer rate for 10CuPA-based OC was relatively higher compared to 10CuA-based OC over 10 cycles. In comparison to 10CuA-based OC, the 10CuPA-based OC presented a steady X-ray diffraction (XRD) pattern after 10 redox cycles, implying that the phase was stably restored due to praseodymium-modified γ alumina support.
  14. Inayat A, Rocha-Meneses L, Ayoub M, Ullah S, Abdullah AZ, Naqvi SR, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):72224-72235.
    PMID: 37170050 DOI: 10.1007/s11356-023-27371-w
    This study investigated the effect of different Co3O4-based catalysts on the catalytic decomposition of nitrous oxide (N2O) and on nitric oxide (NO) conversion. The experiments were carried out using various reaction temperatures, alkaline solutions, pH, mixing conditions, aging times, space velocities, impregnation loads, and compounds. The results showed that Co3O4 catalysts prepared by precipitation methods have the highest catalytic activity and N2O conversion, even at low reaction temperatures, while the commercial nano and powder forms of Co3O4 (CS) have the lowest performance. The catalysts become inactive at temperatures below 400 °C, and their activity is strongly influenced by the mixing temperature. Samples without stirring during the aging process have higher catalytic activity than those with stirring, even at low reaction temperatures (200-300 °C). The catalytic activity of Co3O4 PM1 decreases with low W/F values and low reaction temperatures. Additionally, the catalyst's performance tends to increase with the reduction process. The study suggests that cobalt-oxide-based catalysts are effective in N2O catalytic decomposition and NO conversion. The findings may be useful in the design and optimization of catalytic systems for N2O and NO control. The results obtained provide important insights into the development of highly efficient, low-cost, and sustainable catalysts for environmental protection.
  15. Ullah S, Anwar F, Fayyaz Ur Rehman M, Qadir R, Safwan Akram M
    Chem Biodivers, 2023 Jul;20(7):e202300107.
    PMID: 37172296 DOI: 10.1002/cbdv.202300107
    This article presents an optimized ultrasound-assisted ethanolic extraction (UAEE) and characterization of selected high-value components from Gemlik olive fruit (GOF) harvested from Potohar region of Pakistan. Response surface methodology (RSM), involving central composite design (CCD), was applied to optimize the extraction variables i. e., temperature (25-65 °C), extraction time (15-45 min) and aqueous ethanol concentration (60-90 %) for optimal recovery of bioactives extract, total phenolic contents (TPC) and DPPH free radical scavengers. Under the optimized set of conditions such as 43 °C temperature, 32 min extraction time and 80 % aqueous ethanol, the best extract yield (218.82 mg/g), TPC (19.87 mg GAE/g) and DPPH scavenging activity (63.04 %) were recorded. A quadratic polynomial model was found to be reasonably fitted to the observed results for extract yield (p<0.0001 and R2 =0.9941), TPC (p<0.0001 and R2 =0.9891), and DPPH radical scavenging activity (p<0.0001 and R2 =0.9692). Potent phenolic compounds were identified by GC/MS in GOF extract and considerable amount of essential fatty acids were also detected. The current findings support the use of UAEE as an effective green route for optimized recovery of high-value components from GOF and hence its applications can be extended to functional food and nutra-pharmaceutical developments.
  16. Ullah S, Khalid R, Rehman MF, Irfan MI, Abbas A, Alhoshani A, et al.
    Front Chem, 2023;11:1202252.
    PMID: 37324561 DOI: 10.3389/fchem.2023.1202252
    The green synthesis of nanomaterials is of utmost interest as it offers an eco-friendly approach over chemical synthetic routes. However, the reported biosynthesis methods are often time-consuming and require heating or mechanical stirring. The current study reports a facile one-pot biosynthesis of silver nanoparticles (AgNPs) mediated by olive fruit extract (OFE) and sunlight irradiation of only 20 s. OFE acts as both a reducing and a capping agent for the formation of OFE-capped AgNPs (AgNPs@OFE). The as-synthesized NPs were systematically characterized by UV-vis spectrometry, Fourier transform infrared (FTIR) spectroscopy, scanning electrochemical microscopy with energy-dispersive X-ray (SEM-EDX), X-ray diffraction (XRD), dynamic light scattering (DLS), and cyclic voltammetry. SEM images confirmed the successful formation of monodispersed spherical AgNPs@OFE of approximately 77 nm. FTIR spectroscopy suggested the involvement of functional groups of phytochemicals from the OFE in the capping and reduction of Ag+ to Ag. The particles revealed excellent colloidal stability as evidenced from the high zeta potential (ZP) value (-40 mV). Interestingly, using the disk diffusion method, AgNPs@OFE revealed higher inhibition efficiency against Gram-negative bacteria (Escherichia coli, Klebsiella oxytoca, and extensively drug-resistant (XDR) Salmonella typhi) than Gram-positive bacteria (Staphylococcus aureus), with Escherichia coli showing the highest inhibition zone of 27 mm. In addition, AgNPs@OFE exhibited maximum potent antioxidant scavenging potential against H2O2, followed by DPPH, O2 -, and OH- free radicals. Overall, OFE can be considered an effective source for the sustainable production of stable AgNPs with potential antioxidant and antibacterial activities for biomedical applications.
  17. Ullah S, Mohd Nor NH, Daud H, Zainuddin N, Gandapur MSJ, Ali I, et al.
    Geospat Health, 2021 May 05;16(1).
    PMID: 33969966 DOI: 10.4081/gh.2021.961
    Coronavirus disease 2019 (COVID-19) is the current worldwide pandemic as declared by the World Health Organization (WHO) in March 2020. Being part of the ongoing global pandemic, Malaysia has recorded a total of 8639 COVID-19 cases and 121 deaths as of 30th June 2020. This study aims to detect spatial clusters of COVID-19 in Malaysia using the Spatial Scan Statistic (SaTScan™) to guide control authorities on prioritizing locations for targeted interventions. The spatial analyses were conducted on a monthly basis at the state-level from March to September 2020. The results show that the most likely cluster of COVID-19 occurred in West Malaysia repeatedly from March to June, covering three counties (two federal territories and one neighbouring state) and moved to East Malaysia in July covering two other counties. The most likely cluster shows a tendency of having moved from the western part to the eastern part of the country. These results provide information that can be used for the evidence- based interventions to control the spread of COVID-19 in Malaysia. A Correction has been published: https://doi.org/10.4081/gh.2023.1233
  18. Waqas MY, Lisi H, Yang P, Ullah S, Zhang L, Zhang Q, et al.
    J Exp Zool A Ecol Genet Physiol, 2015 Nov;323(9):655-65.
    PMID: 26350585 DOI: 10.1002/jez.1957
    The oviduct is the location of fertilization and sperm storage. We examined the ultrastructure of the oviduct epithelium and its glandular secretions in the isthmus, uterus and vagina of Chinese soft-shelled turtle Pelodiscus sinensis using light and transmission electron microscopy. The epithelium in these segments is lined with ciliated, secretory and other cells; the first two cell types span the entire epithelium, with secretory cells being predominant. The ciliated cells are characterized by the presence of a secretory vacuole that releases apocrine secretions into the lumen, whereas the secretory cells contain typical biphasic granules with both dark and light aspects. The third type of cells observed have wider proximal portion, abundant mitochondria, vacuoles, and narrow nuclei. The storage of spermatozoa is restricted to the isthmus, uterus, and vagina. In addition, the gland cells show prominent features, including the presence of granules of different shapes, sizes, and electron densities. The synthesis of these granules is described for the first time in this study. Mitochondria appear to play an important role in the formation of dense granules, the rough endoplasmic reticulum and microfilaments may also play a role in the maturation of these dense granules. After completing the maturation process, these granules are released into the lumen of the gland cells.
  19. Ullah S, Al-Sehemi AG, Mubashir M, Mukhtar A, Saqib S, Bustam MA, et al.
    Chemosphere, 2021 May;271:129504.
    PMID: 33445018 DOI: 10.1016/j.chemosphere.2020.129504
    This study reports the application of hydrated lime for the effective adsorption of the heavy mercury metal from the aqueous phase solutions. Initially, hydrated lime was subjected to structural characterization and thermal stability analysis. The FT-IR spectrum analysis revealed that the existence of the O-H bonds as a confirmation of hydrated lime formation. Subsequently, the XRD powder-based analysis demonstrated that most of the hydrated lime is pure crystalline material known as Portlandite while a small amount of calcite is also present in the structure of the hydrated lime. The thermal stability analysis revealed that the hydrated lime is highly thermally stable under harsh conditions without decomposing at higher temperatures up to 500 °C. Furthermore, the hydrated lime was subjected to the selective adsorption of heavy metal mercury to investigate the potential influence of the adsorbent particle size and loading on adsorption capacity. The results demonstrated that the decrease in the adsorbent particle size leads to the improvement in the mercury adsorption attributing to the rise in specific surface area. The enhancement in the loading of the adsorbent resulted in a reduction in mercury adsorption directing to the fact that already adsorbed metal ions onto the adsorbent surface lead to hindrance for the adsorption of other ions of heavy metal. These results lead to a significant impact on modern in inventing different adsorbents with promising water treatment efficiency for more industrial applications and the related recovery of mercury.
  20. Saqib S, Rafiq S, Muhammad N, Khan AL, Mukhtar A, Ullah S, et al.
    J Hazard Mater, 2021 06 05;411:125155.
    PMID: 33858108 DOI: 10.1016/j.jhazmat.2021.125155
    The synergetic effect of nitrogen-rich and CO2-philic filler and polymer in mixed matrix-based membranes (MMMs) can separate CO2 competently. The introduction of well-defined nanostructured porous fillers of pores close to the kinetic diameter of the gas molecule and polymer matrix compatibility is a challenge in improving the gas transportation characteristics of MMMs. This study deals with the preparation of porphyrin filler and the polysulfone (PSf) polymer MMMs. The fillers demonstrated uniform distribution, uniformity, and successful bond formation. MMMs demonstrated high thermal stability with a glass transition temperature in the range of 480-610 °C. The porphyrin filler exhibited microporous nature with the presence of π-π bonds and Lewis's basic functionalities between filler-polymer resulted in a highly CO2-philic structure. The pure and mixed gas permeabilities and selectivity were successfully improved and surpass the Robeson's upper bound curve's tradeoff. Additionally, the temperature influence on CO2 permeability revealed lower activation energies at higher temperatures leading to the gas transport facilitation. This can be granted consistency and long-term durability in polymer chains. These results highlight the unique properties of porphyrin fillers in CO2 separation mixed matrix membranes and offer new knowledge to increase comprehension of PSf performance under various contents or environments.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links