Displaying all 12 publications

Abstract:
Sort:
  1. Daud NNM, Ahmad A, Yaqoob AA, Ibrahim MNM
    Environ Sci Pollut Res Int, 2021 Nov;28(44):62816-62827.
    PMID: 34215989 DOI: 10.1007/s11356-021-15104-w
    Microbial fuel cells (MFCs) are the efficient and sustainable approach for the removal of toxic metals and generate energy concurrently. This article highlighted the effective use of rotten rice as an organic source for bacterial species to generate electricity and decrease the metal concentrations from wastewater. The obtained results were corresponding to the unique MFCs operation where the 510 mV voltage was produced within 14-day operation with 1000 Ω external resistance. The maximum power density and current density were found to be 2.9 mW/m2 and 168.42 mA/m2 with 363.6 Ω internal resistance. Similarly, the maximum metal removal efficiency was found to be 82.2% (Cd), 95.71% (Pb), 96.13% (Cr), 89.50% (Ni), 89.82 (Co), 99.50% (Ag), and 99.88% (Cu). In the biological test, it was found that Lysinibacillus strains, Chryseobacterium strains, Escherichia strains, Bacillus strains are responsible for energy generation and metal removal. Furthermore, a multiparameter optimization revealed that MFCs are the best approach for a natural environment with no special requirements. Lastly, the working mechanism of MFCs and future recommendations are enclosed.
  2. Yaqoob AA, Noor NHBM, Serrà A, Ibrahim MNM
    Nanomaterials (Basel), 2020 May 12;10(5).
    PMID: 32408530 DOI: 10.3390/nano10050932
    The efficient remediation of organic dyes from wastewater is increasingly valuable in water treatment technology, largely owing to the tons of hazardous chemicals currently and constantly released into rivers and seas from various industries, including the paper, pharmaceutical, textile, and dye production industries. Using solar energy as an inexhaustible source, photocatalysis ranks among the most promising wastewater treatment techniques for eliminating persistent organic pollutants and new emerging contaminants. In that context, developing efficient photocatalysts using sunlight irradiation and effectively integrating them into reactors, however, pose major challenges in the technologically relevant application of photocatalysts. As a potential solution, graphene oxide (GO)-based zinc oxide (ZnO) nanocomposites may be used together with different components (i.e., ZnO and GO-based materials) to overcome the drawbacks of ZnO photocatalysts. Indeed, mounting evidence suggests that using GO-based ZnO nanocomposites can promote light absorption, charge separation, charge transportation, and photo-oxidation of dyes. Despite such advances, viable, low-cost GO-based ZnO nanocomposite photocatalysts with sufficient efficiency, stability, and photostability remain to be developed, especially ones that can be integrated into photocatalytic reactors. This article offers a concise overview of state-of-the-art GO-based ZnO nanocomposites and the principal challenges in developing them.
  3. Safian MT, Sekeri SH, Yaqoob AA, Serrà A, Jamudin MD, Mohamad Ibrahim MN
    Talanta, 2022 Mar 01;239:123109.
    PMID: 34864531 DOI: 10.1016/j.talanta.2021.123109
    With each passing year, the agriculture and wood processing industries generate increasingly high tonnages of biomass waste, which instead of being burned or left to accumulate should be utilized more sustainably. In parallel, advances in green technology have encouraged large companies and nations to begin using eco-friendly materials, including eco-friendly emulsifiers, which are used in various industries and in bio-based materials. The emulsion-conducive properties of lignocellulosic materials such as cellulose, hemicellulose, and lignin, the building blocks of plant and wood structures, have demonstrated a particular ability to alter the landscape of emulsion technology. Beyond that, the further modification of their structure may improve emulsion stability, which often determines the performance of emulsions. Considering those trends, this review examines the performance of lignocellulosic materials after modification according to their stability, droplet size, and distribution by size, all of which suggest their outstanding potential as materials for emulsifying agents.
  4. Yaqoob AA, Guerrero-Barajas C, Ibrahim MNM, Umar K, Yaakop AS
    Environ Sci Pollut Res Int, 2022 May;29(22):32913-32928.
    PMID: 35020140 DOI: 10.1007/s11356-021-17444-z
    The present work focused on the utilization of three local wastes, i.e., rambutan (Nephelium lappaceum), langsat (Lansium parasiticum), and mango (Mangifera indica) wastes, as organic substrates in a benthic microbial fuel cell (BMFC) to reduce the cadmium and lead concentrations from synthetic water. Out of the three wastes, the mango waste promoted a maximum current density (87.71 mA/m2) along with 78% and 80% removal efficiencies for Cd2+ and Pb2+, respectively. The bacterial identification proved that Klebsiella pneumoniae, Enterobacter, and Citrobacter were responsible for metal removal and energy generation. In the present work, the BMFC mechanism, current challenges, and future recommendations are also enclosed.
  5. Yaqoob AA, Al-Zaqri N, Alamzeb M, Hussain F, Oh SE, Umar K
    Molecules, 2023 May 25;28(11).
    PMID: 37298824 DOI: 10.3390/molecules28114349
    Microbial fuel cells (MFCs) seem to have emerged in recent years to degrade the organic pollutants from wastewater. The current research also focused on phenol biodegradation using MFCs. According to the US Environmental Protection Agency (EPA), phenol is a priority pollutant to remediate due to its potential adverse effects on human health. At the same time, the present study focused on the weakness of MFCs, which is the low generation of electrons due to the organic substrate. The present study used rotten rice as an organic substrate to empower the MFC's functional capacity to degrade the phenol while simultaneously generating bioenergy. In 19 days of operation, the phenol degradation efficiency was 70% at a current density of 17.10 mA/m2 and a voltage of 199 mV. The electrochemical analysis showed that the internal resistance was 312.58 Ω and the maximum specific capacitance value was 0.00020 F/g on day 30, which demonstrated mature biofilm production and its stability throughout the operation. The biofilm study and bacterial identification process revealed that the presence of conductive pili species (Bacillus genus) are the most dominant on the anode electrode. However, the present study also explained well the oxidation mechanism of rotten rice with phenol degradation. The most critical challenges for future recommendations are also enclosed in a separate section for the research community with concluding remarks.
  6. Yaqoob AA, Ibrahim MNM, Rafatullah M, Chua YS, Ahmad A, Umar K
    Materials (Basel), 2020 May 01;13(9).
    PMID: 32369902 DOI: 10.3390/ma13092078
    The recycling and treatment of wastewater using microbial fuel cells (MFCs) has been attracting significant attention as a way to control energy crises and water pollution simultaneously. Despite all efforts, MFCs are unable to produce high energy or efficiently treat pollutants due to several issues, one being the anode's material. The anode is one of the most important parts of an MFC. Recently, different types of anode materials have been developed to improve the removal rate of pollutants and the efficiency of energy production. In MFCs, carbon-based materials have been employed as the most commonly preferred anode material. An extensive range of potentials are presently available for use in the fabrication of anode materials and can considerably minimize the current challenges, such as the need for high quality materials and their costs. The fabrication of an anode using biomass waste is an ideal approach to address the present issues and increase the working efficiency of MFCs. Furthermore, the current challenges and future perspectives of anode materials are briefly discussed.
  7. Chuo SC, Mohamed SF, Mohd Setapar SH, Ahmad A, Jawaid M, Wani WA, et al.
    Materials (Basel), 2020 Nov 05;13(21).
    PMID: 33167607 DOI: 10.3390/ma13214993
    Nowadays, microbially induced calcium carbonate precipitation (MICP) has received great attention for its potential in construction and geotechnical applications. This technique has been used in biocementation of sand, consolidation of soil, production of self-healing concrete or mortar, and removal of heavy metal ions from water. The products of MICP often have enhanced strength, durability, and self-healing ability. Utilization of the MICP technique can also increase sustainability, especially in the construction industry where a huge portion of the materials used is not sustainable. The presence of bacteria is essential for MICP to occur. Bacteria promote the conversion of suitable compounds into carbonate ions, change the microenvironment to favor precipitation of calcium carbonate, and act as precipitation sites for calcium carbonate crystals. Many bacteria have been discovered and tested for MICP potential. This paper reviews the bacteria used for MICP in some of the most recent studies. Bacteria that can cause MICP include ureolytic bacteria, non-ureolytic bacteria, cyanobacteria, nitrate reducing bacteria, and sulfate reducing bacteria. The most studied bacterium for MICP over the years is Sporosarcina pasteurii. Other bacteria from Bacillus species are also frequently investigated. Several factors that affect MICP performance are bacterial strain, bacterial concentration, nutrient concentration, calcium source concentration, addition of other substances, and methods to distribute bacteria. Several suggestions for future studies such as CO2 sequestration through MICP, cost reduction by using plant or animal wastes as media, and genetic modification of bacteria to enhance MICP have been put forward.
  8. Sekeri SH, Ibrahim MNM, Umar K, Yaqoob AA, Azmi MN, Hussin MH, et al.
    Int J Biol Macromol, 2020 Dec 01;164:3114-3124.
    PMID: 32853611 DOI: 10.1016/j.ijbiomac.2020.08.181
    A study was carried out to determine the effectiveness of lignin, extracted from oil palm (Elaeis guineensis) biomass as water-in-oil (W/O) emulsifying agent. To achieve this goal, soda lignin (SL) was extracted via soda pulping process and a series of nanosized soda lignin (NSL) were prepared using homogenizer at three different speed i.e. 10,400 rpm (NSL 10), 11,400 rpm (NSL 11) and 12,400 rpm (NSL 12) for one hour. All prepared samples were characterized by FT-IR, UV-Vis spectroscopy, thermogravimetric analysis (TGA), zeta potential analyser, Transmission Electron Microscope (TEM) and Extreme High Resolution Field Emission Scanning Electron Microscope (XHR-FESEM). The result of FTIR showed that there is no prominent change occurred in spectra of all samples while a good stability was reflected by TGA curves. The percentage of creaming index and visual observations of all samples demonstrated that NSL 12 and dosage 2 g (out of 1 g, 1.5 g and 2 g) were found to be the best among all samples. Furthermore, the results of IFT indicate that NSL 12 was proven to be more stable than the commercial product. Therefore, NSL 12 is selected for toxicological studies and was found safe in both, in vitro and in vivo studies.
  9. Idris MO, Mohamad Ibrahim MN, Md Noh NA, Yaqoob AA, Hussin MH, Mohamad Shukri IA, et al.
    Chemosphere, 2023 Nov;340:139985.
    PMID: 37640217 DOI: 10.1016/j.chemosphere.2023.139985
    Naphthalene is a very common and hazardous environmental pollutant, and its biodegradation has received serious attention. As demonstrated in this study, naphthalene-contaminated wastewater can be biodegraded using a microbial fuel cell (MFC). Furthermore, the potential of MFC for electricity generation appears to be a promising technology to meet energy demands other than those produced from fossil fuels. Nowadays, efforts are being made to improve the overall performance of MFC by integrating biowaste materials for anode fabrication. In this study, palm kernel shell waste was used to produce palm kernel shell-derived graphene oxide (PKS-GO) and palm kernel shell-derived reduced graphene oxide (PKS-rGO), which were then fabricated into anode electrodes to improve the system's electron mobilization and transport. The MFC configuration with the PKS-rGO anode demonstrated greater energy production potential, with a maximum power density of 35.11 mW/m2 and a current density of 101.76 mA/m2, compared to the PKS-GO anode, which achieved a maximum power density of 17.85 mW/m2 and a current density of 72.56 mA/m2. Furthermore, there is simultaneous naphthalene biodegradation with energy production, where the biodegradation efficiency of naphthalene with PKS-rGO and PKS-GO is 85.5%, and 79.7%, respectively. In addition, the specific capacitance determined from the cyclic voltammetry curve revealed a value for PKS-rGO of 2.23 × 10-4 F/g, which is also higher than the value for PKS-GO (1.57 × 10-4 F/g) on the last day of operation. Anodic microbial analysis shows that electrogens thrive in the MFC process. Finally, a comparison with previous literature and the future prospects of the study are also presented.
  10. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, et al.
    Front Chem, 2020;8:341.
    PMID: 32509720 DOI: 10.3389/fchem.2020.00341
    Nanoparticles (nanoparticles) have received much attention in biological application because of their unique physicochemical properties. The metal- and metal oxide-supported nanomaterials have shown significant therapeutic effect in medical science. The mechanisms related to the interaction of nanoparticles with animal and plant cells can be used to establish its significant role and to improve their activity in health and medical applications. Various attempts have been made to discuss the antibiotic resistance and antimicrobial activity of metal-supported nanoparticles. Despite all these developments, there is still a need to investigate their performance to overcome modern challenges. In this regard, the present review examines the role of various types of metal-supported nanomaterials in different areas such as antibacterial, antifungal, anticancer, and so on. Based on the significant ongoing research and applications, it is expected that metal-supported nanomaterials play an outstanding role not only in medical but also in other important areas.
  11. Aziz ZAA, Mohd-Nasir H, Ahmad A, Mohd Setapar SH, Peng WL, Chuo SC, et al.
    Front Chem, 2019;7:739.
    PMID: 31799232 DOI: 10.3389/fchem.2019.00739
    Nanotechnology is an innovative area of science that includes the design, characterization, production, and application of materials, devices and systems by controlling shape and size at the nanometer scale (1-100 nm). Nanotechnology incorporation in cosmetic formulation is considered as the hottest and emerging technology available. Cosmetic manufacturers use nanoscale size ingredients to provide better UV protection, deeper skin penetration, long-lasting effects, increased color, finish quality, and many more. Micellar nanoparticles is one of the latest field applied in cosmetic products that becoming trending and widely commercialized in local and international markets. The ability of nanoemulsion system to form small micellar nanoparticles size with high surface area allowing to effectiveness of bioactive component transport onto the skin. Oil in water nanoemulsion is playing a major role as effective formulation in cosmetics such as make-up remover, facial cleanser, anti-aging lotion, sun-screens, and other water-based cosmetic formulations. The objective of this review is to critically discuss the properties, advantageous, and mechanism of micellar nanoparticles formation in nanoemulsion system. Therefore, present article introduce and discuss the specific benefits of nanoemulsion system in forming micellar nanoparticles for cosmetic formulation which become major factors for further development of micellar-based cosmetic segments.
  12. Al-Mazaideh GM, Al-Mustafa AH, Alnasser SMA, Nassir-Allah I, Tarawneh KA, Al-Rimawi F, et al.
    Heliyon, 2022 Nov;8(11):e11516.
    PMID: 36468128 DOI: 10.1016/j.heliyon.2022.e11516
    BACKGROUND: Crataegus aronia (C. aronia) extracts have been used medicinally since ancient times and are often utilized in traditional Arab medicine. An extensive study has revealed that Crataegus species have antioxidant, antibacterial, anti-inflammatory, and hypotensive properties.

    OBJECTIVES: This work was performed to explore the phytochemical contents of C. aronia extract, as well as its antioxidant and antibacterial properties, and to assess the lipid peroxidation level as an oxidative stress biomarker in erythrocytes.

    METHODS: Chemical constituents in the methanolic extract of C. aronia were identified by gas chromatography-mass spectrometry and their relative concentrations were determined. The antioxidant activity of C. aronia extract was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The effect of C. aronia on the concentration of malondialdehyde (MDA) in the erythrocyte hemolysates was studied. Also, the crude extract was assessed for its antimicrobial activity through agar diffusion and microbroth dilution assays.

    KEY FINDINGS: The DPPH IC50 value of the extract showed that the antioxidants activity was equal to (14.3 μg/mL) and according to FRAP assay, the antioxidant activity was in the range of 33.9 μmol-82.86 μmol Fe+2/g dw. The extract exerts a protective effect against oxidative stress in RBCs and shows a 50% inhibition of malonyldialdehyde (MDA) at 39.48 μg/mL extract. Minimum inhibitory concentrations were found in the range of 800-1000 μg/mL of leave extracts. The phytochemical analysis showed that the total phenols, flavonoids, and flavonols content were 494.071 mg GAE/g extract, 155.251 mg RE/g extract, and 103.2049 mg RE/g extract). C. aronia extract contains alkaloids, flavonoids, terpenoids, and steroids. Crude extract of C. aronia was more potent in inhibiting the growth of B. subtilis, S. aureus and M. luteus with MIC and MBC values of 800,800 and 1000 μg/mL, respectively. According to GC-MS, 20 compounds were identified: dihydro-3-methylene-5-methyl-2-furanone (14.71%), hexanoic acid (6.57%), ethyl 3,5-ditert-butyl-4-hydroxybenzoate (6.4%), N, N-dimethylheptadecan-1-amine (4.91%), methyl 2-oxobutanoate (4.14%), glyceraldehyde (3.98%), and 2-methoxy-1-(2-nitroethenyl)-3-phenylmethoxybenzene (3.16%), were the major constituents.

    CONCLUSION: This study may open a window of hope for children with Glucose-6-phosphate dehydrogenase disorder by possible utilization of the active ingredients of C. aronia to minimize both oxidative stress and infection which negatively impact the disease sequelae.According to these in vitro experiments, this plant extract has a significant amount of natural antioxidants, which may aid in the protection of various oxidative stresses. As a result, employing the active components of C. aronia to minimize oxidative stress and infection, both of which have a detrimental impact on disease sequelae, may bring hope to children with Glucose-6-phosphate dehydrogenase disorder.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links