Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Yusof R, Abdulmalek E, Sirat K, Rahman MB
    Molecules, 2014 Jun 13;19(6):8011-26.
    PMID: 24932572 DOI: 10.3390/molecules19068011
    Density, viscosity and ionic conductivity data sets of deep eutectic solvents (DESs) formed by tetrabutylammonium bromide (TBABr) paired with ethlyene glycol, 1,3-propanediol, 1,5-pentanediol and glycerol hydrogen bond donors (HBDs) are reported. The properties of DES were measured at temperatures between 303 K and 333 K for HBD percentages of 66.7% to 90%. The effects of HBDs under different temperature and percentages are systematically analyzed. As expected, the measured density and viscosity of the studied DESs decreased with an increase in temperature, while ionic conductivity increases with temperature. In general, DESs made of TBABr and glycerol showed the highest density and viscosity and the lowest ionic conductivity when compared to other DESs. The presence of an extra hydroxyl group on glycerol in a DES affected the properties of the DES.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry*
  2. Khan HW, Zailan AA, Bhaskar Reddy AV, Goto M, Moniruzzaman M
    Environ Technol, 2024 Aug;45(19):3828-3839.
    PMID: 37415504 DOI: 10.1080/09593330.2023.2234669
    In the present investigation, a total of 108 combinations of ionic liquids (ILs) were screened using the conductor-like screening model for real solvents (COSMO-RS) with the aid of six cations and eighteen anions for the extraction of succinic acid (SA) from aqueous streams through dispersive liquid-liquid microextraction (DLLME). Using the screened ILs, an ionic liquid-based DLLME (IL-DLLME) was developed to extract SA and the role of different reaction parameters in the effectiveness of IL-DLLME approach was investigated. COSMO-RS results suggested that, quaternary ammonium and choline cations form effective IL combinations with [OH¯], [F¯], and [SO42¯] anions due to hydrogen bonding. In view of these results, one of the screened ILs, tetramethylammonium hydroxide [TMAm][OH] was chosen as the extractant in IL-DLLME process and acetonitrile was adopted as the dispersive solvent. The highest SA removal efficiency of 97.8% was achieved using 25 μL of IL [TMAm][OH] as a carrier and 500 μL of acetonitrile as dispersive solvent. The highest amount of SA was extracted with a stir time of 20 min at 300 rpm, followed by centrifugation for 5 min at 4500 rpm. Overall, the findings showed that IL-DLLME is efficient in extracting succinic acid from aqueous environments while adhering to the first-order kinetics.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  3. Riaz N, Bustam MA, Chong FK, Man ZB, Khan MS, Shariff AM
    ScientificWorldJournal, 2014;2014:342020.
    PMID: 25105158 DOI: 10.1155/2014/342020
    Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI) method with TiO2 (Degussa-P25) as support and calcined at different temperatures (180, 200, and 300°C) for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR) and temperature programmed reduction (TPR). The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD) removal (86.82%). According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry*
  4. Lim JK, Chieh DC, Jalak SA, Toh PY, Yasin NH, Ng BW, et al.
    Small, 2012 Jun 11;8(11):1683-92.
    PMID: 22438107 DOI: 10.1002/smll.201102400
    Magnetic collection of the microalgae Chlorella sp. from culture media facilitated by low-gradient magnetophoretic separation is achieved in real time. A removal efficiency as high as 99% is accomplished by binding of iron oxide nanoparticles (NPs) to microalgal cells in the presence of the cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) as a binder and subsequently subjecting the mixture to a NdFeB permanent magnet with surface magnetic field ≈6000 G and magnetic field gradient <80 T m(-1) . Surface functionalization of magnetic NPs with PDDA before exposure to Chlorella sp. is proven to be more effective in promoting higher magnetophoretic removal efficiency than the conventional procedure, in which premixing of microalgal cells with binder is carried out before the addition of NPs. Rodlike NPs are a superior candidate for enhancing the magnetophoretic separation compared to spherical NPs due to their stable magnetic moment that originates from shape anisotropy and the tendency to form large NP aggregates. Cell chaining is observed for nanorod-tagged Chlorella sp. which eventually fosters the formation of elongated cell clusters.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  5. Chua SC, Chong FK, Ul Mustafa MR, Mohamed Kutty SR, Sujarwo W, Abdul Malek M, et al.
    Sci Rep, 2020 03 03;10(1):3959.
    PMID: 32127558 DOI: 10.1038/s41598-020-60119-x
    The importance of graft copolymerization in the field of polymer science is analogous to the importance of alloying in the field of metals. This is attribute to the ability of the grafting method to regulate the properties of polymer 'tailor-made' according to specific needs. This paper described a novel plant-based coagulant, LE-g-DMC that synthesized through grafting of 2-methacryloyloxyethyl trimethyl ammonium chloride (DMC) onto the backbone of the lentil extract. The grafting process was optimized through the response surface methodology (RSM) using three-level Box-Behnken Design (BBD). Under optimum conditions, a promising grafting percentage of 120% was achieved. Besides, characterization study including SEM, zeta potential, TGA, FTIR and EDX were used to confirm the grafting of the DMC monomer chain onto the backbone of lentil extract. The grafted coagulant, LE-g-DMC outperformed lentil extract and alum in turbidity reduction and effective across a wide range of pH from pH 4 to pH 10. Besides, the use of LE-g-DMC as coagulant produced flocs with excellent settling ability (5.09 mL/g) and produced the least amount of sludge. Therefore, from an application and economic point of views, LE-g-DMC was superior to native lentil extract coagulant and commercial chemical coagulant, alum.
    Matched MeSH terms: Trimethyl Ammonium Compounds/chemistry*
  6. Ramlli MA, Isa MI
    J Phys Chem B, 2016 11 10;120(44):11567-11573.
    PMID: 27723333
    Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transference number measurement (TNM) techniques were applied to investigate the complexation, structural, and ionic transport properties of and the dominant charge-carrier species in a solid biopolymer electrolyte (SBE) system based on carboxymethyl cellulose (CMC) doped with ammonium fluoride (NH4F), which was prepared via a solution casting technique. The SBEs were partially opaque in appearance, with no phase separation. The presence of interactions between the host polymer (CMC) and the ionic dopant (NH4F) was proven by FT-IR analysis at the C-O band. XRD spectra analyzed using Origin 8 software disclose that the degree of crystallinity (χc%) of the SBEs decreased with the addition of NH4F, indicating an increase in the amorphous nature of the SBEs. Analysis of the ionic transport properties reveals that the ionic conductivity of the SBEs is dependent on the ionic mobility (μ) and diffusion of ions (D). TNM analysis confirms that the SBEs are proton conductors.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry*
  7. Hamdan R, Mara DD
    Water Sci Technol, 2011;63(5):841-4.
    PMID: 21411931 DOI: 10.2166/wst.2011.102
    Rock filters are an established technology for polishing waste stabilization pond effluents. However, they rapidly become anoxic and consequently do not remove ammonium-nitrogen. Horizontal-flow aerated rock filters (HFARF), developed to permit nitrification and hence ammonium-N removal, were compared with a novel vertical-flow aerated rock filter (VFARF). There were no differences in the removals of BOD5, TSS and TKN, but the VFARF consistently produced effluents with lower ammonium-N concentrations (<0.3 mg N/L) than the HFARF (0.8-1.5 mg N/L) and higher nitrate-N concentrations (24-29 mg N/L vs. 17-24 mg N/L).
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  8. Abdul-Rahman R, Tsuno H, Zainol N
    Water Sci Technol, 2002;45(12):197-204.
    PMID: 12201103
    Elevated levels of nutrients in agroindustry wastewaters, and higher reliance on chlorination pose health threats due to formation of chlorinated organics as well as increased chlorination costs. Removals of ammonium and nitrate compounds were studied using activated carbon from palm shells, as adsorbent and support media. Experiments were carried out at several loadings, F:M from 0.31 to 0.58, and hydraulic residence times (HRT) of 24 h, 12 h and 8 h. Results show that the wastewater treatment process achieved removals of over 90% for COD and 62% for Total-N. Studies on removals from river water were carried out in sequencing batch reactor (SBR) and activated carbon biofilm (ACB) reactor. Removals achieved by the SBR adsorption-biodegradation combination were 67.0% for COD, 58.8% for NH3-N and 25.5% for NO3-N while for adsorption alone the removals were only 37.0% for COD, 35.2% for NH3-N and 13.8% for NO3-N. In the ACB reactor, at HRT of 1.5 to 6 h, removals ranged from 12.5 to 100% for COD, 16.7 to 100% for NO3-N and 13.5 to 100% for NH3-N. Significant decrease in removals was shown at lower HRT. The studies have shown that substantial removals of COD, NO3-N and NH3-N from both wastewater and river water may be achieved via adsorption-biodegradation by biofilm on activated carbon processes.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry*
  9. Low KS, Lee CK, Tan BF
    Appl Biochem Biotechnol, 2000 Jun;87(3):233-45.
    PMID: 10982232
    Various species of local wood modified with N-(3-chloro-2-hydroxypropyl)-trimethylammonium chloride showed sorption enhancement for hydrolyzed Reactive Blue 2 (HRB) compared to the untreated samples. The enthalpy of sorption of HRB on Simpoh (Dillenia suffruticosa) was found to be endothermic. Maximum sorption capacity calculated from the Langmuir isotherm was 250.0 mg/g. Under continuous flow conditions HRB could be successfully removed. Dye removal was a function of bed depth and flow rate. However, the bed depth service time model of Bohart and Adams was not applicable in the HRB-quaternized wood system. The modified wood was applied to a sample of industrial textile effluent, and it was found to be able to remove the color successfully under batch conditions.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  10. Daood U, Gopinath D, Pichika MR, Mak KK, Seow LL
    Molecules, 2021 Apr 12;26(8).
    PMID: 33921378 DOI: 10.3390/molecules26082214
    To determine whether quaternary ammonium (k21) binds to Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) spike protein via computational molecular docking simulations, the crystal structure of the SARS-CoV-2 spike receptor-binding domain complexed with ACE-2 (PDB ID: 6LZG) was downloaded from RCSB PD and prepared using Schrodinger 2019-4. The entry of SARS-CoV-2 inside humans is through lung tissues with a pH of 7.38-7.42. A two-dimensional structure of k-21 was drawn using the 2D-sketcher of Maestro 12.2 and trimmed of C18 alkyl chains from all four arms with the assumption that the core moiety k-21 was without C18. The immunogenic potential of k21/QA was conducted using the C-ImmSim server for a position-specific scoring matrix analyzing the human host immune system response. Therapeutic probability was shown using prediction models with negative and positive control drugs. Negative scores show that the binding of a quaternary ammonium compound with the spike protein's binding site is favorable. The drug molecule has a large Root Mean Square Deviation fluctuation due to the less complex geometry of the drug molecule, which is suggestive of a profound impact on the regular geometry of a viral protein. There is high concentration of Immunoglobulin M/Immunoglobulin G, which is concomitant of virus reduction. The proposed drug formulation based on quaternary ammonium to characterize affinity to the SARS-CoV-2 spike protein using simulation and computational immunological methods has shown promising findings.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  11. Jajuli MN, Hussin MH, Saad B, Rahim AA, Hébrant M, Herzog G
    Anal Chem, 2019 06 04;91(11):7466-7473.
    PMID: 31050400 DOI: 10.1021/acs.analchem.9b01674
    A new sample preparation method is proposed for the extraction of pharmaceutical compounds (Metformin, Phenyl biguanide, and Phenformin) of varied hydrophilicity, dissolved in an aqueous sample. When in contact with an organic phase, an interfacial potential is imposed by the presence of an ion, tetramethylammonium (TMA+), common to each phase. The interfacial potential difference drives the transfer of ionic analytes across the interface and allows it to reach up to nearly 100% extraction efficiency and a 60-fold enrichment factor in optimized extraction conditions as determined by HPLC analysis.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  12. Fagge II, Khalid K, Noh MAM, Yusof NSM, Zain SM, Khan MN
    J Oleo Sci, 2018 Jan 01;67(1):55-66.
    PMID: 29238023 DOI: 10.5650/jos.ess17033
    Behaviors of cationic and nonionic mixed micelles in the form of hexadecyltrimethylammonium bromide (HDABr) and hexadecyltrimethylammonium bromide-Polyethylene glycol hexadecyl ether (C16E20), in the presence of inert salts (NaBr and 3,5-dichlorosodium benzoate), by the use of reaction probe between Pp and ionized PhSH (Pp = piperidine and PhSH = phenyl salicylate), has been reported in this work. The values of RXBr (RXBr denotes ion exchange constants obtained in the presence of micelles of different structural features) or KXBr (KXBr denotes ion exchange constants obtained in the presence of micelles of the same structural features) for 3,5-Cl2C6H3CO2- were almost the same at three different [HDABr]T (0.006, 0.010 and 0.015 M). The average value of RXBr or KXBr determined, in the presence of pure HDABr micelles, using semi empirical kinetic (SEK) method appeared to be almost 2½-fold larger (RXBr or KXBr = 198) than that in the presence of mixed HDABr-C16E20 micelles (RXBr or KXBr = 78). Rheological measurements indicated the existence of wormlike/twisted micelles and vesicle at 0.015 M pure HDABr, various [3,5-Cl2C6H3CO2Na], and 25 and 35℃ whereas there were evidence of only spherical micelles in the presence of mixed HDABr-C16E20 ([HDABr]T = 0.015 M and [C16E20]T = 0.006 M) at both temperatures.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  13. Daood U, Ilyas MS, Ashraf M, Akbar M, Asif A, Khan AS, et al.
    J Oral Maxillofac Surg, 2024 Sep;82(9):1147-1162.
    PMID: 38830601 DOI: 10.1016/j.joms.2024.05.004
    BACKGROUND: Treated or coated sutures promise to prevent contamination of wounds.

    PURPOSE: The purpose of the study was to coat surgical sutures with a new quaternary ammonium silane (QAS) antimicrobial compound at two different application temperatures and then to evaluate the resulting structural, physical, mechanical, and biological properties.

    STUDY DESIGN, SETTING, SAMPLE: In vitro and in vivo studies were conducted using male albino Wistar rats approved by the Joint Ethical Committee of IMU and Postgraduate Medical Institute, Lahore. Only suture samples, coated uniformly with verified presence of the compound and of adequate length were used. Samples which were not coated uniformly and with inadequate length or damaged were excluded.

    PREDICTOR VARIABLE: Predictor variables were sutures with and without QAS coatings and different temperatures. Sutures were coated with QAS at 0.5 and 1.0% wt/vol using the dip coating technique and sutures with and without QAS coating were tested at 25 and 40 °C temperatures.

    MAIN OUTCOME VARIABLE(S): Outcome variables of structural and physico-mechanical properties of QAS-coated and non-coated sutures were measured using Fourier transform infrared spectroscopy (for structural changes), confocal laser and scanning electron (for diameter changes), and tensile strength/modulus (for mechanical testing). Biologic outcome variables were tested (bacterial viability); macrophage cultures from Wistar rats were tested (M1/M2 polarization detecting IL-6 and IL-10). Macrophage cells were analyzed with CD80+ (M1) and CD163+ (M2). Chemotaxis index was calculated as a ratio of quantitative fluorescence of cells.

    COVARIATES: Not applicable.

    ANALYSES: Ordinal data among groups were compared using the Wilcoxon Mann-Whitney U test along with the comparison of histological analysis using the Wilcoxon Sign-rank test (P 

    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  14. Che HX, Yeap SP, Osman MS, Ahmad AL, Lim J
    ACS Appl Mater Interfaces, 2014 Oct 8;6(19):16508-18.
    PMID: 25198872 DOI: 10.1021/am5050949
    The synthesis of nanocomposite with controlled surface morphology plays a key role for pollutant removal from aqueous environments. The influence of the molecular size of the polyelectrolyte in synthesizing silica-iron oxide core-shell nanocomposite with open shell structure was investigated by using dynamic light scattering, atomic force microscopy, and quartz crystal microbalance with dissipation (QCM-D). Here, poly(diallydimethylammonium chloride) (PDDA) was used to promote the attachment of iron oxide nanoparticles (IONPs) onto the silica surface to assemble a nanocomposite with magnetic and catalytic bifunctionality. High molecular weight PDDA tended to adsorb on silica colloid, forming a more extended conformation layer than low molecular weight PDDA. Subsequent attachment of IONPs onto this extended PDDA layer was more randomly distributed, forming isolated islands with open space between them. By taking amoxicillin, an antibiotic commonly found in pharmaceutical waste, as the model system, better removal was observed for silica-iron oxide nanocomposite with a more extended open shell structure.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  15. Mousavi S, Ibrahim S, Aroua MK
    Bioresour Technol, 2012 Dec;125:256-66.
    PMID: 23026342 DOI: 10.1016/j.biortech.2012.08.075
    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  16. Wong SP, Lim WH, Cheng SF, Chuah CH
    Colloids Surf B Biointerfaces, 2012 Jan 1;89:48-52.
    PMID: 21937202 DOI: 10.1016/j.colsurfb.2011.08.021
    Quaternary ammonium compounds (QACs) are commonly used as disinfectant in medical care, food industry, detergents and glue industries. This is due to a small concentration of QACs is sufficient to inhibit the growth of various bacteria strains. In this work, the inhibitive power of cationic surfactants, alkyltrimethylammonium bromide (C(n)TAB) in the presence of anionic surfactants, sodium alkyl methyl ester α-sulfonate (C(n)MES) was studied. The growth inhibition test with gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria were used to determine the toxicity of single and mixed surfactants. Results from this work showed that certain mixed surfactants have lower minimum inhibition concentration (MIC) as compared to the single C(n)TAB surfactants. Besides that, it was also found that alkyl chain length and the mixing ratios of the surfactants play a significant role in determining the mixture inhibitive power.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry*
  17. Lee LY, Morad N, Ismail N, Talebi A, Rafatullah M
    Int J Mol Sci, 2020 Sep 18;21(18).
    PMID: 32962106 DOI: 10.3390/ijms21186860
    This study investigates the separation of two heavy metals, Cd(II) and Cu(II), from the mixed synthetic feed using a liquid-liquid extraction. The current study uses tri-octyl methylammonium chloride (Aliquat 336) as the extractant (with tributyl phosphate (TBP) as a phase modifier), diluted in toluene, in order to investigate the selective extraction of Cd(II) over Cu(II) ions. We investigate the use of ethylenediaminetetraacetic acid (EDTA) as a masking agent for Cu(II), when added in aqueous feed, for the selective extraction of Cd(II). Five factors that influence the selective extraction of Cd(II) over Cu(II) (the equilibrium pH (pHeq), Aliquat 336 concentration (Aliquat 336), TBP concentration (TBP), EDTA concentration (EDTA), and organic to aqueous ratio (O:A)) were analyzed. Results from a 25-1 fractional factorial design show that Aliquat 336 significantly influenced Cd(II) extraction, whereas EDTA was statistically significant for the antagonistic effect on the E% of Cu(II) in the same system. Moreover, results from optimization experiment showed that the optimum conditions are Aliquat 336 concentration of 99.64 mM and EDTA concentration of 48.86 mM-where 95.89% of Cd(II) was extracted with the least extracted Cu(II) of 0.59%. A second-order model was fitted for optimization of Cd(II) extraction with a R2 value of 0.998, and ANOVA results revealed that the model adequately fitted the data at a 5% significance level. Interaction between Aliquat 336 and Cd(II) has been proven via FTIR qualitative analysis, whereas the addition of TBP does not affect the extraction mechanism.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  18. Tee LK, Ling CS, Chua MJ, Abdullah S, Rosli R, Chowdhury EH
    Plasmid, 2011 Oct;66(1):38-46.
    PMID: 21419794 DOI: 10.1016/j.plasmid.2011.03.001
    Plasmid DNA is one of the indispensable components in molecular biology research and a potential biomaterial for gene therapy and DNA vaccination. Both quality and quantity of extracted plasmid DNA are of the great interests in cloning and subsequent expression of genes in vitro and in vivo for basic research and therapeutic interventions. Bacteria with extremely short generation times are the valuable source of plasmid DNA that can be isolated through a number of existing techniques. However, the current methods have some limitations in isolating high quality plasmid DNA since the multimeric plasmid which is believed to be more efficiently transcribed by RNA polymerase than the monomeric form, is almost lost during the extraction process. Recently, we developed a rapid isolation technique for multimeric plasmid based on generation of a 'protein aggregate' using a zwitterionic detergent and alkali. Here we have investigated the roles of different parameters in the whole extraction process to optimise the production of high quality multimeric plasmid DNA. Moreover, we have showed the advantageous effects of nanoparticles to effectively sediment the 'protein aggregate' for smooth elution of multimeric plasmid DNA from it. Finally, quality assessment study has revealed that the isolated multimeric DNA is at least 10 times more transcriptionally active than the monomeric form isolated by the commercially available Qiaget kit.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry*
  19. Lai CW
    ScientificWorldJournal, 2014;2014:843587.
    PMID: 24782669 DOI: 10.1155/2014/843587
    Tungsten trioxide (WO₃) possesses a small band gap energy of 2.4-2.8 eV and is responsive to both ultraviolet and visible light irradiation including strong absorption of the solar spectrum and stable physicochemical properties. Thus, controlled growth of one-dimensional (1D) WO₃ nanotubular structures with desired length, diameter, and wall thickness has gained significant interest. In the present study, 1D WO₃ nanotubes were successfully synthesized via electrochemical anodization of tungsten (W) foil in an electrolyte composed of 1 M of sodium sulphate (Na₂SO₄) and ammonium fluoride (NH₄F). The influence of NH₄F content on the formation mechanism of anodic WO₃ nanotubular structure was investigated in detail. An optimization of fluoride ions played a critical role in controlling the chemical dissolution reaction in the interface of W/WO₃. Based on the results obtained, a minimum of 0.7 wt% of NH₄F content was required for completing transformation from W foil to WO₃ nanotubular structure with an average diameter of 85 nm and length of 250 nm within 15 min of anodization time. In this case, high aspect ratio of WO₃ nanotubular structure is preferred because larger active surface area will be provided for better photocatalytic and photoelectrochemical (PEC) reactions.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  20. Wu JY, Ooi CW, Song CP, Wang CY, Liu BL, Lin GY, et al.
    Carbohydr Polym, 2021 Jun 15;262:117910.
    PMID: 33838797 DOI: 10.1016/j.carbpol.2021.117910
    N-[(2-hydroxyl-3-trimethylammonium) propyl] chitosan chloride (HTCC), which is a type of chitosan derivative with quaternary ammonium groups, possesses a higher antibacterial activity as compared to the pristine chitosan. The nanofiber membranes made of HTCC are attractive for applications demanding for antibacterial function. However, the hydrophilic nature of HTCC makes it unsuitable for electrospinning of nanofibers. Hence, biodegradable polyvinyl alcohol (PVA) was proposed as an additive to improve the electrospinnability of HTCC. In this work, PVA/HTCC nanofiber membrane was crosslinked with the blocked diisocyanate (BI) to enhance the stability of nanofiber membrane in water. Microbiological assessments showed that the PVA/HTCC/BI nanofiber membranes possessed a good antibacterial efficacy (∼100 %) against E. coli. Moreover, the biocompatibility of PVA/HTCC/BI nanofiber membrane was proven by the cytotoxicity test on mouse fibroblasts. These promising results indicated that the PVA/HTCC/BI nanofiber membrane can be a promising material for food packaging and as a potential wound dressing for skin regeneration.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links