MATERIALS AND METHODS: The produced nanoparticles were characterized using UV-visible spectroscopy. The Bovine Serum Assay (BSA) and Egg Albumin (EA) assays were used to assess the anti-inflammatory effects. The protein denaturation of AgNPs was calculated and compared to a standard to determine the anti-inflammatory activity of green synthesized AgNPs. Using varying concentrations of OGmediated AgNPs in Mueller Hinton Agar (MHA), the antimicrobial effects of OG have been investigated against E. coli, S. aureus, and Pseudomonas sp. Additionally, by measuring optical density, the time-kill curve analysis for E. Coli and S. Aureus has been examined from one hour for up to five hours.
RESULTS: The green synthesized AgNPs were developed successfully using a plant Ocimum gratissimum. The synthesized AgNPs exhibited a maximum absorption peak at 440 nm and SEM analysis revealed that the synthesized AgNPs were spherical and oval. The result findings of the anti-inflammatory activity reveal that AgNPs have great potential when compared to the standard. At the concentration of 50 μg/mL, AgNPs exhibit 76% in BSA assay and 74% in EA assay, where the standard shows 80% inhibition. The antimicrobial activity showed a zone of inhibition around 19mm for E. coli and a 20mm zone of inhibition for S. aureus and Pseudomonas sp., which shows the efficacy of AgNPs. The time-kill assay shows that the optical density of E. coli and S. aureus was reduced to 0.1 after 5 hours of incubation, which shows the potential of green synthesized AgNPs.
CONCLUSION: OG-mediated AgNPs have both antiinflammatory and antimicrobial effects. Anti-inflammatory effects are better when compared to standard drugs. Antimicrobial effects are better for Gram-negative bacteria.
METHODS: We conducted this scoping review to collect evidence related to the antimicrobial potential of diverse natural compounds from Zingiberaceae plants and their synthetic derivatives. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews guidelines. The literature search was conducted using PubMed, Web of Science and Scopus electronic databases for relevant studies published from 2012 to 2023. A total of 28 scientific studies fulfilled the inclusion criteria. The authors of these studies implemented in vitro and in silico methods to examine the antimicrobial potency and underlying mechanisms of the investigated compounds.
RESULT: The evidence elucidates the antimicrobial activity of natural secondary metabolites from Zingiberaceae species and their synthetic derivatives against a broad panel of gram-positive and gram-negative bacteria, fungi and viruses.
CONCLUSION: To date, researchers have proposed the application of bioactive compounds derived from Zingiberaceae plants and their synthetic analogues as antimicrobial agents. Nevertheless, more investigations are required to ascertain their efficacy and to broaden their commercial applicability.