Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Garudachari B, Isloor AM, Satyanarayana MN, Fun HK, Hegde G
    Eur J Med Chem, 2014 Mar 3;74:324-32.
    PMID: 24486415 DOI: 10.1016/j.ejmech.2014.01.008
    Three series of 8-trifluoromethylquinoline based 1,2,3-triazoles derivatives (5a-c, 6a-d and 7a-c) were synthesized by multi-step reactions by click chemistry approach. Synthesized compounds were characterized by spectral studies and X-ray analysis. The final compounds were screened for their in-vitro antimicrobial activity by well plate method (zone of inhibition). Compounds 5c, 6b, 8b, 11 and 12 were found to be active against tested microbial strains. The results are summarized in Tables 5 and 6.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis*
  2. Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA
    Int J Nanomedicine, 2013;8:4467-79.
    PMID: 24293998 DOI: 10.2147/IJN.S50837
    Copper nanoparticle synthesis has been gaining attention due to its availability. However, factors such as agglomeration and rapid oxidation have made it a difficult research area. In the present work, pure copper nanoparticles were prepared in the presence of a chitosan stabilizer through chemical means. The purity of the nanoparticles was authenticated using different characterization techniques, including ultraviolet visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans. The effect of a chitosan medium on growth of the microorganism was studied, and this was found to influence growth rate. The size of the copper nanoparticles obtained was in the range of 2-350 nm, depending on the concentration of the chitosan stabilizer.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis
  3. Talari MK, Abdul Majeed AB, Tripathi DK, Tripathy M
    Chem Pharm Bull (Tokyo), 2012;60(7):818-24.
    PMID: 22790812
    The application of nanomaterials has gained considerable momentum in various fields in recent years due to their high reactivity, excellent surface properties and quantum effects in the nanometer range. The properties of zinc oxide (ZnO) vary with its crystallite size or particle size and often nanocrystalline ZnO is seen to exhibit superior physical and chemical properties due to their higher surface area and modified electronic structure. ZnO nanoparticles are reported to exhibit strong bacterial inhibiting activity and silver (Ag) has been extensively used for its antimicrobial properties since ages. In this study, Ag doped ZnO nanoparticles were synthesized by mechanochemical processing in a high energy ball mill and investigated for antimicrobial activity. The nanocrystalline nature of zinc oxide was established by X-ray diffraction (XRD) studies. It is seen from the XRD data obtained from the samples, that crystallite size of the zinc oxide nanoparticles is seen to decrease with increasing Ag addition. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) data also supported the nanoparticle formation during the synthesis. The doped nanoparticles were subjected to antimicrobial investigation and found that both increase in Ag content and decrease in particle size contributed significantly towards antimicrobial efficiency. It was also observed that Ag doped ZnO nanoparticles possess enhanced antimicrobial potential than that of virgin ZnO against the studied microorganisms of Escherichia coli and Staphylococcus aureus.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis*
  4. Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV
    Molecules, 2018 Dec 06;23(12).
    PMID: 30563220 DOI: 10.3390/molecules23123220
    Antibiotic resistance is one of the most important global problems currently confronting the world. Different biomedical applications of silver nanoparticles (AgNPs) have indicated them to be promising antimicrobial agents. In the present study, extracellular extract of an endophytic bacterium, Pantoea ananatis, was used for synthesis of AgNPs. The synthesized AgNPs were characterized by UV⁻Vis spectroscopy, FTIR, transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and Zeta potential. The antimicrobial potential of the AgNPs against pathogenic Staphylococcus aureus subsp. aureus (ATCC 11632), Bacillus cereus (ATCC 10876), Escherichia coli (ATCC 10536), Pseudomonas aeruginosa (ATCC 10145) and Candida albicans (ATCC 10231), and multidrug resistant (MDR) Streptococcus pneumoniae (ATCC 700677), Enterococcus faecium (ATCC 700221) Staphylococcus aureus (ATCC 33592) Escherichia coli (NCTC 13351) was investigated. The synthesized spherical-shaped AgNPs with a size range of 8.06 nm to 91.32 nm exhibited significant antimicrobial activity at 6 μg/disc concentration against Bacillus cereus (ATCC 10876) and Candida albicans (ATCC 10231) which were found to be resistant to conventional antibiotics. The synthesized AgNPs showed promising antibacterial efficiency at 10 µg/disc concentration against the MDR strains. The present study suggests that AgNPs synthesized by using the endophytic bacterium P. ananatis are promising antimicrobial agent.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis
  5. Chilamakuru NB, Singirisetty T, Bodapati A, Kallam SDM, Nelson VK, Suryadevara PR, et al.
    Luminescence, 2024 Nov;39(11):e70026.
    PMID: 39529222 DOI: 10.1002/bio.70026
    This study focuses on developing novel antimicrobials to combat drug-resistant pathogens, addressing compounds failing clinical trials due to inadequate physicochemical properties. Sixteen imidazolidine-4-one derivatives were synthesized by extensive evaluation using molecular docking, absorption, distribution, metabolism, excretion (ADME) predictions, and antimicrobial testing. Molecular docking studies conducted with Schrödinger's Glide revealed that compounds S4 and G8 exhibited superior docking scores of -7.839 and -7.776, respectively. The G series outperformed the S series in scores. ADME analysis confirmed all compounds adhered to Lipinski's rule of five. In addition, IR and NMR provided details about the structure of the compounds. Antimicrobial activity was assessed against Escherichia coli, Staphylococcus aureus, and Candida albicans, with compounds G2 and S2 showing exceptional minimum inhibitory concentration (MIC) values of 6.25 μg/mL against E. coli. S2 also demonstrated impressive activity against S. aureus (MIC 3.12 μg/mL), and S4 exhibited potent activity against C. albicans (MIC 0.8 μg/mL) than fluconazole (1.6 μg/mL). Additionally, antihelmintic activity was evaluated, with G1, G3, G8, S2, S4, S7, and S8 showing effective paralysis and death time 20 min and below at 50 mg/mL concentration. These results underscore the potential of new imidazolidine-4-one derivatives as suitable sources to develop a drug candidate to treat resistant infections.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis
  6. Kumar CS, Then LY, Chia TS, Chandraju S, Win YF, Sulaiman SF, et al.
    Molecules, 2015 Sep 11;20(9):16566-81.
    PMID: 26378514 DOI: 10.3390/molecules200916566
    A series of five new 2-(1-benzofuran-2-yl)-2-oxoethyl 4-(un/substituted)benzoates 4(a-e), with the general formula of C₈H₅O(C=O)CH₂O(C=O)C₆H₄X, X = H, Cl, CH₃, OCH₃ or NO₂, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a-e) were characterized by FTIR, ¹H-, (13)C- and ¹H-(13)C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC) value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34%) in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, 4d (31.01% ± 4.35%) in ferric reducing antioxidant power (FRAP) assay and 4a (27.11% ± 1.06%) in metal chelating (MC) activity.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis
  7. Agbo EN, Makhafola TJ, Choong YS, Mphahlele MJ, Ramasami P
    Molecules, 2015 Dec 25;21(1):E28.
    PMID: 26712730 DOI: 10.3390/molecules21010028
    Suzuki-Miyaura cross-coupling of 6-bromo-2-styrylquinazolin-4(3H)-ones with arylboronic acids afforded a series of novel 6-aryl-2-styrylquinazolin-4(3H)-ones. These compounds were evaluated for potential anticancer properties against the human renal (TK-10), melanoma (UACC-62) and breast cancer (MCF-7) cell lines. Their antimicrobial properties were also evaluated against six Gram-positive and four Gram-negative bacteria, as well as two strains of fungi. Molecular docking studies (in silico) were conducted on compounds 5a, b, d and 6a, b, d-f to recognize the hypothetical binding motif of the title compounds within the active site of the dihydrofolate reductase and thymidylate synthase enzymes.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis*
  8. Hussain MA, Shah A, Jantan I, Tahir MN, Shah MR, Ahmed R, et al.
    J Nanobiotechnology, 2014;12:53.
    PMID: 25468206 DOI: 10.1186/s12951-014-0053-5
    Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report green synthesis of silver nanoparticles (Ag NPs) mediated with dextran. Dextran was used as a stabilizer and capping agent to synthesize Ag NPs using silver nitrate (AgNO3) under diffused sunlight conditions.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis
  9. Rohilla P, Deep A, Kamra M, Narasimhan B, Ramasamy K, Mani V, et al.
    Drug Res (Stuttg), 2014 Oct;64(10):505-9.
    PMID: 24992500 DOI: 10.1055/s-0034-1368720
    A series of N'-(substituted benzylidene)-2-(benzo[d]oxazol-3(2H)-yl)acetohydrazide derivatives was synthesized and evaluated for its in vitro antimicrobial and anticancer activities. Antimicrobial activity results revealed that compound 12 was found to be the most potent antimicrobial agent. Results of anticancer study indicated that the synthesized compounds exhibited average anticancer potential. Compound 7 (IC 50 =3.12 µM) and compound 16 (IC 50 =2.88 µM) were found to be most potent against breast cancer (MCF7) cell lines. In conclusion, compound 12 and 16 have the potential to be selected as lead compound for the developing of novel antimicrobial and anticancer agents respectively.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis*
  10. Ravichandran V, Jain A, Kumar KS, Rajak H, Agrawal RK
    Chem Biol Drug Des, 2011 Sep;78(3):464-70.
    PMID: 21615706 DOI: 10.1111/j.1747-0285.2011.01149.x
    A series of 1,3-thiazolidin-4-one derivatives were prepared by the reaction of respective aromatic amine, aromatic aldehyde, and thioglycolic acid in dry benzene/toluene. The newly synthesized compounds were characterized on the basis of elemental analysis, IR, (1) HNMR, and mass spectra. The newly synthesized final compounds were evaluated for their in vitro antibacterial, antifungal, and anti-viral activities. Preliminary results indicated that some of the compounds demonstrated antibacterial activity in the range of 7-13 μg/mL, antifungal activity in the range of 13-17 μg/mL, comparable with the standard drugs, ciprofloxacin and fluconazole. Structure-activity relationship studies revealed that the nature of the substituents at the 2 and 3 positions of the thiazolidinone nucleus had a significant impact on the in vitro antimicrobial and anti-viral activity of these classes of agents.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis
  11. Arshad A, Osman H, Bagley MC, Lam CK, Mohamad S, Zahariluddin AS
    Eur J Med Chem, 2011 Sep;46(9):3788-94.
    PMID: 21712145 DOI: 10.1016/j.ejmech.2011.05.044
    Two novel series of hydrazinyl thiazolyl coumarin derivatives have been synthesized and fully characterized by IR, (1)H NMR, (13)C NMR, elemental analysis and mass spectral data. The structures of some compounds were further confirmed by X-ray crystallography. All of these derivatives, 10a-d and 15a-h, were screened in vitro for antimicrobial activity against various bacteria species including Mycobacterium tuberculosis and Candida albicans. The compounds 10c, 10d and 15e exhibited very good activities against all of the tested microbial strains.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis*
  12. Mohammed AAM, Suaifan GARY, Shehadeh MB, Okechukwu PN
    Drug Dev Res, 2019 02;80(1):179-186.
    PMID: 30570767 DOI: 10.1002/ddr.21508
    In the quest for discovering potent antimicrobial agents with lower toxicity, we envisioned the design and synthesis of nalidixic acid-D-(+)-glucosamine conjugates. The novel compounds were synthesized and evaluated for their in vitro antimicrobial activity against Gram positive bacteria, Gram negative bacteria and fungi. Cytotoxicity using MTT assay over L6 skeletal myoblast cell line, ATCC CRL-1458 was carried out. In vitro antimicrobial assay revealed that 1-ethyl-7-methyl-4-oxo-N-(1,3,4,6-tetra-O-acetyl-2-deoxy-D-glucopyranose-2-yl)-[1,8]-naphthyridine-3-carboxamide (5) and 1-ethyl-7-methyl-4-oxo-N-(2-deoxy-D-glucopyranose-2-yl)-[1,8]-naphthyridine-3-carboxamide(6) possess growth inhibitory activity against resistant Escherichia coli NCTC, 11954 (MIC 0.1589 mM) and Methicillin resistant Staphylococcus aureus ATCC, 33591 (MIC 0.1589 mM). Compound (5) was more active against Listeria monocytogenes ATCC 19115 (MIC 0.1113 mM) in comparison with the reference nalidixic acid (MIC 1.0765 mM). Interestingly, compound (6) had potential antifungal activity against Candida albicans ATCC 10231 (MIC <0.0099 mM). Remarkably, the tested compounds had low cytotoxic effect. This study indicated that glucosamine moiety inclusion into the chemical structure of the marketed nalidixic acid enhances antimicrobial activity and safety.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis*
  13. Ashraf MA, Peng WX, Fakhri A, Hosseini M, Kamyab H, Chelliapan S
    J. Photochem. Photobiol. B, Biol., 2019 Sep;198:111579.
    PMID: 31401316 DOI: 10.1016/j.jphotobiol.2019.111579
    The sol-gel/ultrasonically rout produced the novel MnS2-SiO2 nano-hetero-photocatalysts with the various ratio of MnS2. Prepared nano-catalyst were investigated in the photo-degradation of methylene blue under UV light illumination. Structural and optical attributes of as-prepared nano-catalysts were evaluated by X-ray diffraction and photoelectron spectroscopy. The morphological were studied by scanning electron microscopy-EDS, and dynamic light scattering. The diffuse reflectance spectroscopy was applied to examine the band gap energy. The Eg values of SiO2, MnS2-SiO2-0, MnS2-SiO2-1, and MnS2-SiO2-2 nanocomposites are 6.51, 3.85, 3.17, and 2.67 eV, respectively. The particle size of the SiO2 and MnS2-SiO2-1 nanocomposites were 100.0, and 65.0 nm, respectively. The crystallite size values of MnS2-SiO2-1 were 52.21 nm, and 2.9 eV, respectively. MnS2-SiO2 nano-photocatalyst was recognized as the optimum sample by degrading 96.1% of methylene blue from water. Moreover, the influence of pH of the solution, and contact time as decisive factors on the photo-degradation activity were investigated in this project. The optimum data for pH and time were found 9 and 60 min, respectively. The photo-degradation capacity of MnS2-SiO2-2 is improved (96.1%) due to the low band gap was found from UV-vis DRS. The antimicrobial data of MnS2-SiO2 were studied and demonstrated that the MnS2-SiO2 has fungicidal and bactericidal attributes.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis
  14. Hussain MA, Ashraf MU, Muhammad G, Tahir MN, Bukhari SNA
    Curr Pharm Des, 2017;23(16):2377-2388.
    PMID: 27779081 DOI: 10.2174/1381612822666160928143328
    The therapy of various diseases by the drugs entrapped in calixarene derivatives is gaining attraction of researchers nowadays. Calixarenes are macrocyclic nano-baskets which belong to cavitands class of host-guest chemistry. They are the marvelous hosts with distinct hydrophobic three dimensional cavities to entrap and encapsulate biologically active guest drugs. Calixarene and its derivatives develop inclusion complexes with various types of drugs and vitamins for their sustained/targeted release. Calixarene and its derivatives are used as carriers for anti-cancer, anti-convulsant, anti-hypertensive, anthelmentic, anti-inflammatory, antimicrobial and antipsychotic drugs. They are the important biocompatible receptors to improve solubility, chemical reactivity and decrease cytotoxicity of poorly soluble drugs in supramolecular chemistry. This review focuses on the calixarene and its derivatives as the state-of-the-art in host-guest interactions for important drugs. We have also critically evaluated calixarenes for the development of prodrugs.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis
  15. Ibrahim MM, Al-Refai M, Al-Fawwaz A, Ali BF, Geyer A, Harms K, et al.
    J Fluoresc, 2018 Mar;28(2):655-662.
    PMID: 29680927 DOI: 10.1007/s10895-018-2227-2
    Furopyridine III, namely 1-(3-amino-4-(4-(tert-butyl)phenyl)-6-(p-tolyl)furo[2,3-b]pyridin-2-yl)ethan-1-one, synthesized from 4-(4-(tert-butyl)phenyl)-2-oxo-6-(p-tolyl)-1,2-dihydropyridine-3-carbonitrile I in two steps. The title compound is characterized by NMR, MS and its X-ray structure. The molecular structure consists of planar furopyridine ring with both phenyl rings being inclined from the furopyridine scaffold to a significant different extent. There are three intramolecular hydrogen bonds within the structure. The lattice is stabilized by N-H…O, H2C-H …π and π…π intermolecular interactions leading to three-dimensional network. Compound III exhibits fluorescent properties, which are investigated. Antimicrobial potential and antioxidant activity screening studies for the title compound III and the heterocyclic derivatives, I and II, show no activity towards neither bacterial nor fungal strains, while they exhibited weak to moderate antioxidant activity compared to reference.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis
  16. Pasupuleti VR, Prasad TN, Shiekh RA, Balam SK, Narasimhulu G, Reddy CS, et al.
    Int J Nanomedicine, 2013;8:3355-64.
    PMID: 24039419 DOI: 10.2147/IJN.S49000
    Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps) were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the biomedical and nanotechnology-based industries.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis
  17. Jindal HM, Le CF, Mohd Yusof MY, Velayuthan RD, Lee VS, Zain SM, et al.
    PLoS One, 2015;10(6):e0128532.
    PMID: 26046345 DOI: 10.1371/journal.pone.0128532
    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis*
  18. Yit KH, Zainal-Abidin Z
    Curr Top Med Chem, 2024;24(13):1158-1184.
    PMID: 38584545 DOI: 10.2174/0115680266294573240328050629
    AIMS: There has been increased scientific interest in bioactive compounds and their synthetic derivatives to promote the development of antimicrobial agents that could be used sustainably and overcome antibiotic resistance.

    METHODS: We conducted this scoping review to collect evidence related to the antimicrobial potential of diverse natural compounds from Zingiberaceae plants and their synthetic derivatives. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews guidelines. The literature search was conducted using PubMed, Web of Science and Scopus electronic databases for relevant studies published from 2012 to 2023. A total of 28 scientific studies fulfilled the inclusion criteria. The authors of these studies implemented in vitro and in silico methods to examine the antimicrobial potency and underlying mechanisms of the investigated compounds.

    RESULT: The evidence elucidates the antimicrobial activity of natural secondary metabolites from Zingiberaceae species and their synthetic derivatives against a broad panel of gram-positive and gram-negative bacteria, fungi and viruses.

    CONCLUSION: To date, researchers have proposed the application of bioactive compounds derived from Zingiberaceae plants and their synthetic analogues as antimicrobial agents. Nevertheless, more investigations are required to ascertain their efficacy and to broaden their commercial applicability.

    Matched MeSH terms: Anti-Infective Agents/chemical synthesis
  19. Kumar S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2019;19(7):609-621.
    PMID: 30526456 DOI: 10.2174/1389557519666181210162413
    BACKGROUND: A series of 6, 6'-(1,4-phenylene)bis(4-(4-bromophenyl)pyrimidin-2-amine) derivatives has been synthesized by Claisen-Schmidt condensation and its chemical structures was confirmed by FT-IR, 1H/13C-NMR spectral and elemental analyses. The molecular docking study was carried out to find the interaction between active bis-pyrimidine compounds with CDK-8 protein. The in vitro antimicrobial potential of the synthesized compounds was determined against Gram-positive and Gram-negative bacterial species as well fungal species by tube dilution technique. Antimicrobial results indicated that compound 11y was found to be most potent one against E. coli (MICec = 0.67 µmol/mL) and C. albicans (MICca = 0.17 µmol/mL) and its activity was comparable to norfloxacin (MIC = 0.47 µmol/mL) and fluconazole (MIC = 0.50 µmol/mL), respectively.

    CONCLUSION: Anticancer screening of the synthesized compounds using Sulforhodamine B (SRB) assay demonstrated that compounds 2y (IC50 = 0.01 µmol/mL) and 4y (IC50= 0.02 µmol/mL) have high antiproliferative potential against human colorectal carcinoma cancer cell line than the reference drug (5- fluorouracil) and these compounds also showed best dock score with better potency within the ATP binding pocket and may also be used lead for rational drug designing.

    Matched MeSH terms: Anti-Infective Agents/chemical synthesis
  20. Tahlan S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2020;20(15):1559-1571.
    PMID: 30179132 DOI: 10.2174/1389557518666180903151849
    BACKGROUND: Various analogues of benzimidazole are found to be biologically and therapeutically potent against several ailments. Benzimidazole when attached with heterocyclic rings has shown wide range of potential activities. So, from the above provided facts, we altered benzimidazole derivatives so that more potent antagonists could be developed. In the search for a new category of antimicrobial and anticancer agents, novel azomethine of 2-mercaptobenzimidazole derived from 3-(2- (1H-benzo[d]imidazol-2-ylthio)acetamido)benzohydrazide were synthesized.

    RESULTS AND DISCUSSION: The synthesized analogues were characterized by FT-IR, 1H/13C-NMR and MS studies as well C, H, N analysis. All synthesized compounds were evaluated for in vitro antibacterial activity against Gram-positive (B. subtilis), Gram-negative (E. coli, P. aeruginosa, K. pneumoniae and S. typhi) strains and in vitro antifungal activity against C. albicans and A. niger strains by serial dilution method, the minimum inhibitory concentration (MIC) described in μM/ml. The in vitro anticancer activity of synthesized compounds was determined against human colorectal carcinoma cell line (HCT- 116) using 5-fluorouracil as standard drug.

    CONCLUSION: In general, most of the synthesized derivatives exhibited significant antimicrobial and anticancer activities. Compounds 8, 10, 15, 16, 17, 20 and 22 showed significant antimicrobial activity towards tested bacterial and fungal strains and compound 26 exhibited significant anticancer activity.

    Matched MeSH terms: Anti-Infective Agents/chemical synthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links