Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Lee WPC, Wong FH, Attenborough NK, Kong XY, Tan LL, Sumathi S, et al.
    J Environ Manage, 2017 Jul 15;197:63-69.
    PMID: 28324782 DOI: 10.1016/j.jenvman.2017.03.027
    In the present work, two-dimensional bismuth oxybromide (BiOBr) was synthesized and coupled with co-catalyst molybdenum disulphide (MoS2) via a simple hydrothermal process. The photoactivity of the resulting hybrid photocatalyst (MoS2/BiOBr) was evaluated under the irradiation of 15 W energy-saving light bulb at ambient condition using Reactive Black 5 (RB5) as model dye solution. The photo-degradation of RB5 by BiOBr loaded with 0.2 wt% MoS2 (MoBi-2) exhibited more than 1.4 and 5.0 folds of enhancement over pristine BiOBr and titanium dioxide (Degussa, P25), respectively. The increased photocatalytic performance was a result of an efficient migration of excited electrons from BiOBr to MoS2, prolonging the electron-hole pairs recombination rate. A possible charge transfer diagram of this hybrid composite photocatalyst, and the reaction mechanism for the photodegradation of RB5 were proposed.
    Matched MeSH terms: Bismuth*
  2. Krishnan SAG, Gumpu MB, Arthanareeswaran G, Goh PS, Aziz F, Ismail AF
    Chemosphere, 2023 Jan;311(Pt 2):137016.
    PMID: 36374783 DOI: 10.1016/j.chemosphere.2022.137016
    Herbicides such as atrazine and humus substances such as fulvic acid are widely used in agricultural sector. They can be traced in surface and groundwater around the agriculture field at concentrations beyond the approved limit due to their mobility and persistence. Bismuth-based photocatalysts activated by visible light are potential materials for removing various organic pollutants from water bodies. These photocatalysts can also be suitable candidates for developing a hybrid membrane with anti-fouling properties. In this study, Bi2WO6 nanoparticles were synthesized via the hydrothermal method and integrated into the cellulose acetate (CA), polyetherimide (PEI), polysulfone (PSF) and polyvinylidene fluoride (PVDF) polymers via physical blending approach. The hybrid membranes were then characterized by FTIR, XPS and FESEM to confirm the chemical bonding, chemical composition and surface morphology of Bi2WO6. Thus, the pure water flux of CA (35.6 L m-2 h-1), PEI (46.56 L m-2 h-1), PSF (6.84 L m-2 h-1), and PVDF (68.47 L m-2 h-1) hybrid membranes has significantly enhanced than the pristine CA, PEI, PSF and PVDF membranes. The significant rejection of atrazine-fulvic acid was observed with hybrid membranes in the order of CA (84.1%) > PVDF (72.7%) > PEI (47.8%) > PSF (37.2%), and these membranes have shown an excellent flux recovery ratio than pristine membranes. Further, electrochemical quantification studies were performed to analyze the removal efficiency of atrazine-fulvic acid from water. In this present work, GO-modified SPE was employed for electrochemical sensing studies. The resultant CA hybrid membrane achieved removal efficiency of 84.08% for atrazine. It was observed that the Bi2WO6 established strong bonding with CA, and PVDF membranes, thus showing a significant removal efficiency and FRR than other hybrid and pristine membranes.
    Matched MeSH terms: Bismuth*
  3. Hui KC, Ang WL, Yahya WZN, Sambudi NS
    Chemosphere, 2022 Mar;290:133377.
    PMID: 34952025 DOI: 10.1016/j.chemosphere.2021.133377
    The present work demonstrates the coupling of titanium dioxide, TiO2 nanoparticles (TNP) with N-doped, Bi-doped, and N-Bi co-doped rice husk-derived carbon dots (CDs) via a facile dispersion method, forming respective photocatalyst composites of CDs/TNP, N-CDs/TNP, Bi-CDs/TNP and N-Bi-CDs/TNP. Characterization analyzes verified the successful incorporation of respective CDs samples into TNP, forming photocatalyst composite with narrowed band gap and quenched photoluminescence intensity. Photocatalytic activity of TNP and the respective composites was investigated for photodegradation of diclofenac (DCF) under both simulated sunlight and natural sunlight irradiation. The as-prepared N-Bi-CDs/TNP composite showed the best photocatalytic performance among all composites, able to completely degrade 5 ppm of DCF within 60 min and 180 min under both types of visible light irradiation, respectively. The N-Bi-CDs/TNP composite also showed a TOC removal efficiency up to 87.63%. N-Bi-CDs, worked as photosensitizer and electron reservoir, contributed to the outstanding photocatalytic activity of N-Bi-CDs/TNP, whereby the recombination was prolonged and light absorption was shifted towards the visible light region. Furthermore, the composite of N-Bi-CDs/TNP also demonstrated good stability and reusability over repeated degradation cycles. The photodegradation of DCF resulted into several intermediates, which were identified from LC-MS analysis. The present work could provide an insight on the application of heteroatoms doped and co-doped carbon dots in semiconductor oxide as high performance photocatalysts.
    Matched MeSH terms: Bismuth*
  4. Koo PL, Choong ZY, He C, Bao Y, Jaafar NF, Oh WD
    Chemosphere, 2023 Mar;318:137915.
    PMID: 36702411 DOI: 10.1016/j.chemosphere.2023.137915
    In this study, a facile hydrothermal method was employed to prepare Me-doped Bi2Fe4O9 (Me = Zn, Cu, Co, and Mn) as peroxymonosulfate (PMS) activator for ciprofloxacin (CIP) degradation. The characteristics of the Me-doped bismuth ferrites were investigated using various characterization instruments including SEM, TEM, FTIR and porosimeter indicating that the Me-doped Bi2Fe4O9 with nanosheet-like square orthorhombic structure was successfully obtained. The catalytic activity of various Me-doped Bi2Fe4O9 was compared and the results indicated that the Cu-doped Bi2Fe4O9 at 0.08 wt.% (denoted as BFCuO-0.08) possessed the greatest catalytic activity (kapp = 0.085 min-1) over other Me-doped Bi2Fe4O9 under the same condition. The synergistic interaction between Cu, Fe and oxygen vacancies are the key factors which enhanced the performance of Me-doped Bi2Fe4O9. The effects of catalyst loading, PMS dosage, and pH on CIP degradation were also investigated indicating that the performance increased with increasing catalyst loading, PMS dosage, and pH. Meanwhile, the dominant reactive oxygen species was identified using the chemical scavengers with SO4•-, •OH, and 1O2 playing a major role in CIP degradation. The performance of BFCuO-0.08 deteriorated in real water matrix (tap water, river water and secondary effluent) due to the presence of various water matrix species. Nevertheless, the BFCuO-0.08 catalyst possessed remarkable stability and can be reused for at least four successive cycles with >70% of CIP degradation efficiency indicating that it is a promising catalyst for antibiotics removal.
    Matched MeSH terms: Bismuth*
  5. Mengting Z, Duan L, Zhao Y, Song Y, Xia S, Gikas P, et al.
    J Environ Manage, 2023 Nov 01;345:118772.
    PMID: 37597373 DOI: 10.1016/j.jenvman.2023.118772
    This work investigates the use of novel BiOI@ZIF-8 nanocomposite for the removal of acetaminophen (Ace) from synthetic wastewater. The samples were analyzed using FTIR, XRD, XPS, DRS, PL, FESEM-EDS, and ESR techniques. The effects of the loading capacity of ZIF-8 on the photocatalytic oxidation performance of bismuth oxyiodide (BiOI) were studied. The photocatalytic degradation of Ace was maximized by optimizing pH, reaction time and the amount of photocatalyst. On this basis, the removal mechanisms of the target pollutant by the nanocomposite and its photodegradation pathways were elucidated. Under optimized conditions of 1 g/L of composite, pH 6.8, and 4 h of reaction time, it was found that the BiOI@ZIF-8 (w/w = 1:0.01) nanocomposite exhibited the highest Ace removal (94%), as compared to that of other loading ratios at the same Ace concentration of 25 mg/L. Although this result was encouraging, the treated wastewater still did not satisfy the required statutory of 0.2 mg/L. It is suggested that the further biological processes need to be adopted to complement Ace removal in the samples. To sustain its economic viability for wastewater treatment, the spent composite still could be reused for consecutive five cycles with 82% of regeneration efficiency. Overall, this series of work shows that the nanocomposite was a promising photocatalyst for Ace removal from wastewater samples.
    Matched MeSH terms: Bismuth/chemistry
  6. Sidek HA, Bahari HR, Halimah MK, Yunus WM
    Int J Mol Sci, 2012;13(4):4632-41.
    PMID: 22606000 DOI: 10.3390/ijms13044632
    This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG) systems in the form of (GeO(2))(60)-(PbO)(40-) (x)-(½Bi(2)O(3))(x) where x = 0 to 40 mol%. Their densities with respect of Bi(2)O(3) concentration were determined using Archimedes' method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B(2)O(3))(20)-(PbO)(80-) (x)-(Bi(2)O(3))(x). The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi(2)O(3) content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young's also increase linearly with addition of Bi(2)O(3) but the bulk modulus did not. The Poisson's ratio and fractal dimensionality are also found to vary linearly with the Bi(2)O(3) concentration.
    Matched MeSH terms: Bismuth/chemistry*
  7. Oo HM, Mohamed-Kamari H, Wan-Yusoff WM
    Int J Mol Sci, 2012;13(4):4623-31.
    PMID: 22605999 DOI: 10.3390/ijms13044623
    A series of binary tellurite based glasses (Bi(2)O(3))(x) (TeO(2))(100-) (x) was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi(3+) increase, this is due to the increased polarization of the ions Bi(3+) and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, E(opt) decreases while the refractive index increases when the ion Bi(3+) content increases.
    Matched MeSH terms: Bismuth/chemistry*
  8. Promsuwan K, Saichanapan J, Soleh A, Saisahas K, Samoson K, Wangchuk S, et al.
    Food Chem, 2024 Jul 30;447:138987.
    PMID: 38518621 DOI: 10.1016/j.foodchem.2024.138987
    Nitrite (NO2-) is widely used as an additive to extend the shelf life of food products. Excessive nitrite intake not only causes blood-related diseases but also has the potential risk of causing cancers. A disposable screen-printed electrode was modified with nano‑palladium decorated bismuth sulfide microspheres (nanoPd@Bi2S3MS/SPE), and integrated with a smartphone-interfaced potentiostat to develop a portable, electrochemical nitrite sensor. NanoPd@Bi2S3MS was prepared by the hydrothermal reduction of a Bi2S3MS and Pd2+ dispersion and drop cast on the SPE. The nanoPd@Bi2S3MS/SPE was coupled with a smartphone-controlled portable potentiostat and applied to determine nitrite in food samples. The linear range of the sensor was 0.01-500 μM and the limit of detection was 0.0033 μM. The proposed system showed good repeatability, reproducibility, catalytic stability, and immunity to interferences. The proposed electrode material and a smartphone-based small potentiostat created a simple, portable, fast electrochemical sensing system that accurately measured nitrite in food samples.
    Matched MeSH terms: Bismuth*
  9. Harun SW, Shahi S, Ahmad H
    Opt Lett, 2009 Jan 01;34(1):46-8.
    PMID: 19109635
    A single-wavelength Brillouin fiber laser (BFL) is demonstrated at the extended L-band region using bismuth-based erbium-doped fiber (Bi-EDF) for the first time to the best of our knowledge. A 2.15-m-long Bi-EDF is used to provide both nonlinear and linear gains to generate a stimulated Brillouin scattering (SBS) and to amplify the generated SBS, respectively. The BFL operates at 1613.93 nm, which is upshifted by 0.09 nm from the Brillouin pump with a peak power of 2 dBm and a side-mode suppression ratio of more than 22 dB. The generated BFL has a narrow linewidth and many potential applications, such as in optical communication and sensors.
    Matched MeSH terms: Bismuth
  10. Kong XY, Choo YY, Chai SP, Soh AK, Mohamed AR
    Chem Commun (Camb), 2016 Dec 06;52(99):14242-14245.
    PMID: 27872917
    Photocatalytic CO2 reduction over the UV-Vis-NIR broad spectrum was realized for the first time. The presence of surface oxygen vacancy defects on Bi2WO6 resulted in significant photocatalytic enhancement over the pristine counterpart under UV and visible light irradiation. Meanwhile, the photocatalytic responsiveness of Bi2WO6-OV was successfully extended to the NIR region.
    Matched MeSH terms: Bismuth
  11. Abdullah AH, Abdullah EA, Zainal Z, Hussein MZ, Ban TK
    Water Sci Technol, 2012;65(9):1632-8.
    PMID: 22508126 DOI: 10.2166/wst.2012.057
    The adsorption of methyl orange dye from aqueous solution onto penta-bismuth hepta-oxide nitrate, Bi(5)O(7)NO(3), synthesized by precipitation method, was studied in a batch adsorption system. The effects of operation parameters such as adsorbent dose, initial dye concentration, pH and temperature were investigated. The adsorption equilibrium and mechanism of adsorption was evaluated by Langmuir and Freundlich isotherm and different kinetic models, respectively. The results indicate that adsorption is highly dependent on all operation parameters. At optimum conditions, the adsorption capacity was found to be 18.9 mg/g. The adsorption data fits well with the Langmuir isotherm model indicating monolayer coverage of adsorbate molecules on the surface of Bi(5)O(7)NO(3). The kinetic studies show that the adsorption process is a second-order kinetic reaction. Although intra-particle diffusion limits the rate of adsorption, the multi-linearity plot of intra-particle model shows the importance of both film and intra-particle diffusion as the rate-limiting steps of the dye removal. Thermodynamic parameters show that the adsorption process is endothermic, spontaneous and favourable at high temperature.
    Matched MeSH terms: Bismuth/chemistry*
  12. Bahari HR, Sidek HA, Adikan FR, Yunus WM, Halimah MK
    Int J Mol Sci, 2012;13(7):8609-14.
    PMID: 22942723 DOI: 10.3390/ijms13078609
    Heavy metal oxide glasses, containing bismuth and/or lead in their glass structure are new alternatives for rare eart (RE) doped hosts. Hence, the study of the structure of these vitreous systems is of great interest for science and technology. In this research work, GeO(2)-PbO-Bi(2)O(3) glass host doped with Er(3+)/Yb(3+) ions was synthesized by a conventional melt quenching method. The Fourier transform infrared (FTIR) results showed that PbO and Bi(2)O(3) participate with PbO(4) tetragonal pyramids and strongly distort BiO(6) octahedral units in the glass network, which subsequently act as modifiers in glass structure. These results also confirmed the existence of both four and six coordination of germanium oxide in glass matrix.
    Matched MeSH terms: Bismuth/chemistry*
  13. Ghazali MS, Zakaria A, Rizwan Z, Kamari HM, Hashim M, Zaid MH, et al.
    Int J Mol Sci, 2011;12(3):1496-504.
    PMID: 21673903 DOI: 10.3390/ijms12031496
    The optical band-gap energy (E(g)) is an important feature of semiconductors which determines their applications in optoelectronics. Therefore, it is necessary to investigate the electronic states of ceramic ZnO and the effect of doped impurities under different processing conditions. E(g) of the ceramic ZnO + xBi(2)O(3) + xTiO(2), where x = 0.5 mol%, was determined using a UV-Vis spectrophotometer attached to a Reflectance Spectroscopy Accessory for powdered samples. The samples was prepared using the solid-state route and sintered at temperatures from 1140 to 1260 °C for 45 and 90 minutes. E(g) was observed to decrease with an increase of sintering temperature. XRD analysis indicated hexagonal ZnO and few small peaks of intergranular layers of secondary phases. The relative density of the sintered ceramics decreased and the average grain size increased with the increase of sintering temperature.
    Matched MeSH terms: Bismuth/chemistry*
  14. Abdullah AH, Moey HJ, Yusof NA
    J Environ Sci (China), 2012;24(9):1694-701.
    PMID: 23520879
    Visible-light driven photocatalyst bismuth vanadate (BiVO4) photocatalyst was synthesized by the polyol route using ethylene glycol. The precipitate was washed, dried and calcined at 450 degrees C for 3 hr. The sample was characterized by X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), zeta potential, surface area (BET method) and band gap energy via diffuse reflectance spectroscopy (DRS). The synthesized BiVO4 has a monoclinic phase with a surface area of 4.3 m2/g and a band gap energy of 2.46 eV. A majority of the particles were in the range of 90-130 nm as obtained from the particle size distribution histrogram. The efficiency of the sample as a visible-light driven photocatalyst was examined by photodegrading Methylene Blue (MB). The effects of some operational photodegradation parameters such as mass loading, initial dye concentration and pH were also examined. Experimental design methodology was applied by response surface modeling and optimization of the removal of MB. The multivariate experimental design was employed to develop a quadratic model as a functional relationship between the percentage removal of MB and three experimental factors (BiVO4 loading, MB initial concentration and pH). The percentage removal of MB approached 67.21% under optimized conditions. In addition, a satisfactory goodness-of-fit was achieved between the,predictive and the experimental results.
    Matched MeSH terms: Bismuth/chemistry*
  15. Reda Mahmoud TA, Ismail NI, Muda AS, Abdul Rahman MR
    Ann Thorac Surg, 2010 Aug;90(2):654-5.
    PMID: 20667375 DOI: 10.1016/j.athoracsur.2010.02.031
    Bismuth paste injection into the pleural cavity used to be a treatment for chronic empyema thoracis. This method, however, was long forgotten and scarcely practiced due to advanced surgical techniques and antibiotic therapy. We report a 50-year-old man with chronic empyema thoracis who was successfully treated with bismuth paste injection after a failed surgical decortication and a long-term chest drainage. This case highlights a trial of a 100-year-old method of bismuth paste injection which proved effective after standard measures had failed.
    Matched MeSH terms: Bismuth/administration & dosage*
  16. Rahman NJA, Ramli A, Jumbri K, Uemura Y
    Sci Rep, 2019 11 07;9(1):16223.
    PMID: 31700157 DOI: 10.1038/s41598-019-52771-9
    Bifunctional heterogeneous catalysts have a great potential to overcome the shortcomings of homogeneous and enzymatic catalysts and simplify the biodiesel production processes using low-grade, high-free-fatty-acid feedstock. In this study, we developed ZrO2-based bifunctional heterogeneous catalysts for simultaneous esterification and transesterification of microalgae to biodiesel. To avoid the disadvantage of the low surface area of ZrO2, the catalysts were prepared via a surfactant-assisted sol-gel method, followed by hydrothermal treatments. The response surface methodology central composite design was employed to investigate various factors, like the surfactant/Zr molar ratio, pH, aging time, and temperature on the ZrO2 surface area. The data were statistically analyzed to predict the optimal combination of factors, and further experiments were conducted for verification. Bi2O3 was supported on ZrO2 via the incipient wetness impregnation method. The catalysts were characterized by a variety of techniques, which disclosed that the surfactant-assisted ZrO2 nanoparticles possess higher surface area, better acid-base properties, and well-formed pore structures than bare ZrO2. The highest yield of fatty acid methyl esters (73.21%) was achieved using Bi2O3/ZrO2(CTAB), and the catalytic activity of the developed catalysts was linearly correlated with the total densities of the acidic and basic sites. The mechanism of the simultaneous reactions was also discussed.
    Matched MeSH terms: Bismuth/chemistry
  17. Daub NA, Aziz F, Mhamad SA, Chee DNA, Jaafar J, Yusof N, et al.
    Environ Sci Pollut Res Int, 2024 Mar;31(11):16629-16641.
    PMID: 38321283 DOI: 10.1007/s11356-024-32261-w
    In response to the escalating global issue of microbial contamination, this study introduces a breakthrough photocatalyst: bismuth ferrite-activated carbon (BFO-AC) for visible light-driven disinfection, specifically targeting the Gram-positive bacterium Staphylococcus aureus (S. aureus). Employing an ultrasonication method, we synthesized various BFO-AC ratios and subjected them to comprehensive characterization. Remarkably, the bismuth ferrite-activated carbon 1:1.5 ratio (BA 1:1.5) nanocomposite exhibited the narrowest band gap of 1.86 eV. Notably, BA (1:1.5) demonstrated an exceptional BET surface area of 862.99 m2/g, a remarkable improvement compared to pristine BFO with only 27.61 m2/g. Further investigation through FE-SEM unveiled the presence of BFO nanoparticles on the activated carbon surface. Crucially, the photocatalytic efficacy of BA (1:1.5) towards S. aureus reached its zenith, achieving complete inactivation in just 60 min. TEM analysis revealed severe damage and rupture of bacterial cells, affirming the potent disinfection capabilities of BA (1:1.5). This exceptional disinfection efficiency underscores the promising potential of BA (1:1.5) for the treatment of contaminated water sources. Importantly, our results underscore the enhanced photocatalytic performance with an increased content of activated carbon, suggesting a promising avenue for more effective microorganism inactivation.
    Matched MeSH terms: Bismuth/pharmacology
  18. Dorraj M, Zakaria A, Abdollahi Y, Hashim M, Moosavi S
    ScientificWorldJournal, 2014;2014:741034.
    PMID: 25243225 DOI: 10.1155/2014/741034
    In ZnO-based low voltage varistor, the two essential features of microstructure determining its nonlinear response are the formation Bi-enriched active grain boundaries as well as a controlled ZnO grain size by secondary spinel-type phases. Besides, the microstructure and phase composition are strongly affected by the dopant concentration during sintering process. In this study, the optimal dopant levels of Bi2O3, TiO2, and Sb2O3 to achieve maximized nonlinear electrical property (alpha) were quantified by the response surface methodology (RSM). RSM was also used to understand the significance and interaction of the factors affecting the response. Variables were determined as the molar ratio of Bi2O3, TiO2, and Sb2O3. The alpha was chosen as response in the study. The 5-level-3-factor central composite design, with 20 runs, was used to conduct the experiments by ball milling method. A quadratic model was established as a functional relationship between three independent variables and alpha. According to the results, the optimum values of Bi2O3, TiO2, and Sb2O3 were obtained 0.52, 0.50, and 0.30, respectively. Under optimal conditions the predicted alpha (9.47) was calculated using optimal coded values from the model and the theoretical value is in good agreement with the value (9.43) obtained by confirmation experiment.
    Matched MeSH terms: Bismuth/standards; Bismuth/chemistry*
  19. Talik Sisin NN, Abdul Razak K, Zainal Abidin S, Che Mat NF, Abdullah R, Ab Rashid R, et al.
    Int J Nanomedicine, 2020;15:7805-7823.
    PMID: 33116502 DOI: 10.2147/IJN.S269214
    Purpose: This study aimed to quantify synergetic effects induced by bismuth oxide nanoparticles (BiONPs), cisplatin (Cis) and baicalein-rich fraction (BRF) natural-based agent on the reactive oxygen species (ROS) generation and radiosensitization effects under irradiation of clinical radiotherapy beams of photon, electron and HDR-brachytherapy. The combined therapeutic responses of each compound and clinical radiotherapy beam were evaluated on breast cancer and normal fibroblast cell line.

    Methods: In this study, individual BiONPs, Cis, and BRF, as well as combinations of BiONPs-Cis (BC), BiONPs-BRF (BB) and BiONPs-Cis-BRF (BCB) were treated to the cells before irradiation using HDR brachytherapy with 0.38 MeV iridium-192 source, 6 MV photon beam and 6 MeV electron beam. The individual or synergetic effects from the application of the treatment components during the radiotherapy were elucidated by quantifying the ROS generation and radiosensitization effects on MCF-7 and MDA-MB-231 breast cancer cell lines as well as NIH/3T3 normal cell line.

    Results: The ROS generated in the presence of Cis stimulated the most substantial amount of ROS compared to the BiONPs and BRF. Meanwhile, the combination of the components had induced the higher ROS levels for photon beam than the brachytherapy and electron beam. The highest ROS enhancement relative to the control is attributable to the presence of BC combination in MDA-MB-231 cells, in comparison to the BB and BCB combinations. The radiosensitization effects which were quantified using the sensitization enhancement ratio (SER) indicate the highest value by BC in MCF-7 cells, followed by BCB and BB treatment. The radiosensitization effects are found to be more prominent for brachytherapy in comparison to photon and electron beam.

    Conclusion: The BiONPs, Cis and BRF are the potential radiosensitizers that could improve the efficiency of radiotherapy to eradicate the cancer cells. The combination of these potent radiosensitizers might produce multiple effects when applied in radiotherapy. The BC combination is found to have the highest SER, followed by the BCB combination. This study is also the first to investigate the effect of BRF in combination with BiONPs (BB) and BC (BCB) treatments.

    Matched MeSH terms: Bismuth/pharmacology*; Bismuth/chemistry*
  20. Basar N, Donnelly S, Sirat HM, Thomas EJ
    Org Biomol Chem, 2013 Dec 28;11(48):8476-505.
    PMID: 24212203 DOI: 10.1039/c3ob41931b
    Reactions of 5-benzyloxy-4-methylpent-2-enyl(tributyl)stannane with aldehydes promoted by bismuth(III) iodide were usefully stereoselective in favour of the (E)-1,5-anti-6-benzyloxy-5-methylalk-3-en-1-ols. Similar stereoselectivity was observed for reactions of analogous 5-benzyloxy-4-methylpent-2-enyl bromides with aldehydes when promoted by a low valency bismuth species prepared by reduction of bismuth(III) triiodide with powdered zinc so providing a "tin-free" procedure. The analogous reactions of 4-benzyloxypent-2-enyl(tributyl)stannane with aldehydes promoted by bismuth(III) iodide were also stereoselective but gave lower yields. Attempted 1,6-stereocontrol using these reactions resulted in only modest stereoselectivities. Aspects of the chemistry of the products were studied in particular their stereoselective conversion into aliphatic compounds with methyl bearing stereogenic centres at 1,5,9,13- and 1,3,5-positions along the aliphatic chain. Mechanistically, allylic organobismuth species may be involved in both sets of reactions but this was not confirmed although the similar stereoselectivities observed for both the bismuth(III) iodide mediated reactions of the pent-2-enylstannanes and the low-valency bismuth promoted reactions of the pent-2-enyl bromides are consistent with participation of similar intermediates.
    Matched MeSH terms: Bismuth
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links