RESULTS: The preliminary phytochemical screening of the plant seed revealed the presence of anthraquinones, flavonoids, saponins, tannins and terpenoids. The isolation of active compounds was carried out in four steps: multiple extractions, fractionation using column chromatography and purification using preparative thin-layer chromatography (TLC) and liquid chromatography/mass spectrometry (LC/MS). The structure of separated compounds was determined on the basis of mass spectrometry data. One compound was identified is roseanone.
CONCLUSIONS: The MS analysis on the active fraction from seed extract of C. fistula confirmed the presence of roseanone with antiyeast activity.
RESULTS: Oral administration of crude extract at the highest dose of 5000 mg/kg resulted in no mortalities or evidence of adverse effects, implying that C. fistula in nontoxic. Throughout 14 days of the treatment no changes in behavioural pattern, clinical sign and body weight of mice in both control and treatment groups. Also there were no any significant elevations observed in the biochemical analysis of the blood serum. Further, histopathological examination revealed normal architecture and no significant adverse effects observed on the kidney, heart, liver, lung and spleen.
CONCLUSIONS: Overall, the results suggest that, the oral administration of C. fistula methanolic seeds extract did not produce any significant toxic effect in mice. Hence, the extract can be utilized for pharmaceutical formulations.
OBJECTIVE: The objective of this study was to develop an ultrasound-assisted extraction (UAE) method for achieving a high extraction yield of anthraquinones using the response surface methodology (RSM), Box-Behnken design (BBD), and a recycling preparative high-performance liquid chromatography (HPLC) protocol for isolation of anthraquinones from C. singueana.
METHODOLOGY: Optimisation of UAE was performed using the Box-Behnken experimental design. Recycling preparative HPLC was employed to isolate anthraquinones from the root extract of C. singueana.
RESULTS: The BBD was well-described by a quadratic polynomial model (R2 = 0.9751). The predicted optimal UAE conditions for a high extraction yield were obtained at: extraction time 25.00 min, temperature 50°C and solvent-sample ratio of 10 mL/g. Under the predicted conditions, the experimental value (1.65 ± 0.07%) closely agreed to the predicted yield (1.64%). The obtained crude extract of C. singueana root was subsequently purified to afford eight anthraquinones.
CONCLUSION: The extraction protocol described here is suitable for large-scale extraction of anthraquinones from plant extracts.