Herein, cellulose nanocrystals were synthesized from oil palm fronds (CNC-OPF) involving two pretreatment approaches, viz. autohydrolysis and soda pulping. The pretreatments were applied individually to OPF fibers to assess their influence on CNCs' physicochemical and thermal properties. CNC-OPF samples were assessed using complementary characterization techniques, which confirmed their purity and characteristics. CP/MAS 13C NMR and TEM studies revealed that autohydrolysis pretreatment yielded CNCs with effective hemicellulose and extractives removal compared to that of soda pulping. XRD analysis demonstrated that autohydrolysis-treated CNC-OPF contained a much higher crystallinity index compared to soda pulping treatment. BET measurement disclosed a relatively higher surface area and wider pore diameter of autohydrolysis-treated CNC-OPF. Autohydrolysis-treated CNCs were applied as a reinforcement filler in alginate-based hydrogel beads for the removal of 4-chlorophenol from water, which attained a qmax of 19.168 mg g-1. BET analysis revealed the less porous nature of CNC-ALG hydrogel beads which could have contributed to hydrogel beads' relatively lower adsorption capacity. The point of zero charge of CNC-ALG hydrogel beads was 4.82, suggesting their applicability only within a short solution pH range. This study directs future studies to unveil the possibilities of functionalizing CNCs in order to enhance the adsorption performance of CNC-immobilized hydrogel beads towards 4-chlorophenol and other organic contaminants.
Recently, hetero junction materials (p-n-p and n-p-n) have been developed for uplifting the visible light activity to destroy the harmful pollutants in wastewater. This manuscript presents a vivid description of novel n-p-n junction materials namely CeO2-PPy-ZnO. This novel n-p-n junction was applied as the photocatalyst in drifting the mobility of charge carriers and hence obtaining the better photocatalytic activity when compared with p-n and pure system. Such catalyst's syntheses were successful via the copolymerization method. The structural, morphological and optical characterization techniques were applied to identify the physio-chemical properties of the prepared materials. Additionally, the superior performance of this n-p-n nanostructured material was demonstrated in the destruction of micro organic (chlorophenol) toxic wastes under visible light. The accomplished ability of the prepared catalysts (up to 92% degradation of chlorophenol after 180 min of irradiation) and their profound degradation mechanism was explained in detail.
In this study, the photocatalytic degradation of toxic pollutant (2-chlorophenol) in the presence of ZnO nanoparticles (ZnO NPs) was investigated under solar radiation. The three main factors, namely pH of solution, solar intensity and calcination temperature, were selected in order to examine their effects on the efficiency of the degradation process. The response surface methodology (RSM) technique based on D-optimal design was applied to optimise the process. ANOVA analysis showed that solar intensity and calcination temperature were the two significant factors for degradation efficiency. The optimum conditions in the model were solar intensity at 19.8 W/m(2), calcination temperature at 404 °C and pH of 6.0. The maximum degradation efficiency was predicted to be 90.5% which was in good agreement with the actual experimental value of 93.5%. The fit of the D-optimal design correlated very well with the experimental results with higher values of R (2) and R (2)adj correlation coefficients of 0.9847 and 0.9676, respectively. The intermediate mechanism behaviour of the 2-chlorophenol degradation process was determined by gas chromatography-mass spectrometry (GC-MS). The results confirmed that 2-chlorophenol was converted to acetic acid, a non-toxic compound.
The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.
The effects of dry biomass density in cryogel beads, shaking speed and initial concentration ratio of phenol to 4-chlorophenol (4-CP) on the bioregeneration efficiencies of binary phenol and 4-CP-loaded granular activated carbon (GAC) for phenol and 4-CP, respectively, were investigated under the simultaneous adsorption and biodegradation approach. The results revealed higher bioregeneration efficiencies of binary-loaded GAC for phenol and 4-CP at higher dry biomass density but moderate shaking speed. The optimum dry biomass density in cryogel beads and shaking speed for use in bioregeneration were found to be 0.01 g/mL and 250 rpm, respectively. With respect to the initial phenol to 4-CP concentration ratio, the bioregeneration efficiencies were lower under increasing phenol and 4-CP initial concentrations, respectively, with the effect being more conspicuous under increasing 4-CP concentration. Higher bioregeneration efficiencies were achieved with the use of immobilized rather than suspended biomasses.
A novel samarium-doped spherical-like ZnO hierarchical nanostructure (Sm/ZnO) was synthesized via a facile and surfactant-free chemical solution route. The as-synthesized products were characterized by X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, field emission scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The results revealed that Sm ion was successfully doped into ZnO. It was also observed that the Sm doping increased the visible light absorption ability of Sm/ZnO and a red shift for Sm/ZnO appeared when compared to pure ZnO. The photocatalytic studies revealed that the Sm/ZnO exhibited excellent photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) compared with the pure ZnO and commercial TiO2 under visible light irradiation. The photocatalytic enhancement of Sm/ZnO products was attributed to their high charge separation efficiency and ·OH generation ability as evidenced by the photoluminescence spectra. The photocatalytic investigation also showed that various parameters exerted their individual influence on the degradation rate of 2,4-DCP. By using a certain of radical scavengers, ·OH was determined to play a pivotal role for the 2,4-DCP degradation. Moreover, the Sm/ZnO could be easily separated and reused, indicating great potential for practical applications in environmental cleanup.
In this study, the microcrystalline cellulose/metal-organic framework 199 hybrid (MCC/MOF-199) was applied as sorbent for the dispersive micro-solid phase-extraction (D-μSPE) of chlorophenols. The D-μSPE method combined with high-performance liquid chromatography- ultraviolet detection (HPLC-UV) was employed to determine of four chlorophenols including 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,3-dichlorophenol (2,3-DCP), and 2,5-dichlorophenol (2,5-DCP) in aqueous. The main parameters of the D-μSPE process that influence the extraction (i.e. the amount of sorbent, elution condition, extraction time, and pH) were investigated and optimized. Based on the outputs, the presence of MCC on the surface of MOF-199 leads to improve the properties of MOF-199 and the MCC/MOF-199 has the highest sorption capacity, durability, and porosity in comparison with MCC and MOF-199. According to the validation study at the optimized conditions, the linearity for the analytes was achieved in the range from 0.1 to 200 ng mL-1 for 2-CP and 4-CP and 0.15 to 200 ng mL-1 for 2,3-DCP and 2,5-DCP with correlation coefficients between 0.9928 and 0.9965. The limits of detection calculated at S/N=3 were in the range of 0.03-0.05 ng mL-1. Besides, the relative standard deviations (RSDs) for three spiking levels (0.2, 10,100 ng mL-1) do not exceed 6.8% and extraction recoveries are between 81.0% and 88.3%. Finally, the D-μSPE-HPLC-UV method was successfully applied to the analysis of CPs in real water samples (mineral, river and wastewater samples) with good recoveries (95.8 to 99.5%) and satisfactory precisions (RSD < 6.8%).
This work describes methacrylic acid functionalized β-cyclodextrin (MAA-βCD) as a novel functional monomer in the preparation of molecular imprinted polymer (MIP MAA-βCD) for the selective removal of 2,4-dichlorophenol (2,4-DCP). The polymer was characterized using Fourier Transform Infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The influence of parameters such as solution pH, contact time, temperature and initial concentrations towards removal of 2,4-DCP using MIP MAA-βCD have been evaluated. The imprinted material shows fast kinetics and the optimum pH for removal of 2,4-DCP is pH 7. Compared with the corresponding non-imprinted polymer (NIP MAA-βCD), the MIP MAA-βCD exhibited higher adsorption capacity and outstanding selectivity towards 2,4-DCP. Freundlich isotherm best fitted the adsorption equilibrium data of MIP MAA-βCD and the kinetics followed a pseudo-second-order model. The calculated thermodynamic parameters showed that adsorption of 2,4-DCP was spontaneous and exothermic under the examined conditions.
A kinetic model incorporating adsorption, desorption and biodegradation processes was developed to describe the bioregeneration of granular activated carbon (GAC) loaded with 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, in simultaneous adsorption and biodegradation processes. The model was numerically solved and the results showed that the kinetic model was well-fitted (R(2)>0.83) to the experimental data at different GAC dosages and at various initial 4-CP and 2,4-DCP concentrations. The rate of bioregeneration in simultaneous adsorption and biodegradation processes was influenced by the ratio of initial chlorophenol concentration to GAC dosage. Enhancement in the rate of bioregeneration was achieved by using the lowest ratio under either one of the following experimental conditions: (1) increasing initial chlorophenol concentration at constant GAC dosage and (2) increasing GAC dosage at constant initial chlorophenol concentration. It was found that the rate enhancement was more pronounced under the second experimental condition.
The photocatalytically driven removal of eco-persistent 4-chlorophenol from water using ZnO is reported here. Kinetic dependence of transformation rate on operating variables such as initial 4-chlorophenol concentration and photocatalyst doses was investigated. A complete degradation of 4-chlorophenol at 50 mg L(-1) levels was realised in 3h. Analytical profiles on 4-chlorophenol transformation were consistent with the best-line fit of the pseudo zero-order kinetics. The addition of small amounts of inorganic anions as SO(4)(2-), HPO(4)(-), S(2)O(8)(2-) and Cl(-) revealed two anion types: active site blockers and rate enhancers. Fortunately, Cl(-) and SO(4)(2-) commonly encountered in contaminated waters enhanced the rate of 4-chlorophenol degradation. The reaction intermediates and route to 4-chlorophenol mineralisation were elucidated by combined RP-HPLC and GC-MS methods. In addition to previously reported pathway products of 4-chlorophenol photo-oxidation catechol was detected. A radical mechanism involving o-hydroxylation is proposed to account for the formation of catechol.
The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich-Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), standard free energy (DeltaG degrees ) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.
Moving bed sequencing batch reactors (MBSBRs) packed with 8% (v/v) of 8-, 27- and 64-mL polyurethane (PU) foam cubes, respectively, were investigated for simultaneous 4-chlorophenol (4-CP) and nitrogen removal at increasing 4-CP concentration. When the 4-CP concentration exceeded 300 mg L(-1), the MBSBR with 27-mL foam cubes was observed to outperform the other MBSBRs in removing 4-CP and nitrogen. The reasons were: (1) there were more biomass in inner layer of the 27-mL cubes, compared to that of the 8-mL cubes, which was more shielded from the inhibitory effect of 4-CP and (2) the 27-mL cubes were more mobile than the 64-mL cubes. Although increasing 4-CP concentration to 600 mg L(-1) resulted in incomplete removal of 4-CP in the MBSBRs, results of the batch reactor with 27-mL foam cubes showed that complete 4-CP removal within the REACT period could be achieved by increasing the packing volume to 20%.
The interactions within microbial, chemical and electronic elements in microbial fuel cell (MFC) system can be crucial for its bio-electrochemical activities and overall performance. Therefore, this study explored polynomial models by response surface methodology (RSM) to better understand interactions among anode pH, cathode pH and inoculum size for optimising MFC system for generation of electricity and degradation of 2,4-dichlorophenol. A statistical central composite design by RSM was used to develop the quadratic model designs. The optimised parameters were determined and evaluated by statistical results and the best MFC systematic outcomes in terms of current generation and chlorophenol degradation. Statistical results revealed that the optimum current density of 106 mA/m2 could be achieved at anode pH 7.5, cathode pH 6.3-6.6 and 21-28% for inoculum size. Anode-cathode pHs interaction was found to positively influence the current generation through extracellular electron transfer mechanism. The phenolic degradation was found to have lower response using these three parameter interactions. Only inoculum size-cathode pH interaction appeared to be significant where the optimum predicted phenolic degradation could be attained at pH 7.6 for cathode pH and 29.6% for inoculum size.
In this work, fibrous silica-titania (FST) was successfully prepared by the microemulsion method prior to the addition of three types of carbonaceous materials: graphitic-carbon nitride, g-C3N4 (CN), graphene nanoplatelets (GN), and multi-wall carbon nanotubes, MWCNT (CNT), via a solid-state microwave irradiation technique. The catalysts were characterized using XRD, FESEM, TEM, FTIR, UV-Vis DRS, N2 adsorption-desorption, XPS and ESR, while their photoactivity was examined on the degradation of toxic 2-chlorophenol (2-CP). The result demonstrated that the initial reaction rate was in the following order: CNFST (5.1 × 10-3 mM min-1) > GNFST (2.5 × 10-3 mM min-1) > CNTFST (2.3 × 10-3 mM min-1). The best performance was due to the polymeric structure of g-C3N4 with a good dispersion of C and N on the surface FST. This dispersion contributed towards an appropriate quantity of defect sites, as a consequence of the greater interaction between g-C3N4 and the FST support, that led to narrowed of band gap energy (2.98 eV to 2.10 eV). The effect of scavenger and ESR studies confirmed that the photodegradation over CNFST occurred via a Z-scheme mechanism. It is noteworthy that the addition of green carbonaceous materials on the FST markedly enhanced the photodegradation of toxic 2-CP.
Electro-mediated microextraction (EMM) combined with micro-high performance liquid chromatography-ultraviolet detection was successfully developed for the determination of selected phenols, namely 4-chlorophenol (4CP), 2-nitrophenol (2NP) and 2,4-dichlorophenols (2,4 DCP) in water. A solvent-impregnated agarose gel disc was utilized as a solvent holder in this study. Under optimum extraction conditions, the method showed good linearity in the range of 0.1-250µgL-1, 0.3-250µgL-1and 0.2-500µgL-1for 4CP, 2NP and 2,4 DCP, respectively with correlation coefficients of ≥ 0.9975, ultra-trace LODs (0.03-0.1µgL-1) and satisfactory relative recovery average (85.0-114.1%) for the analysis of selected phenols. The proposed method was rapid and eco-friendly as the solvent holder was constructed using minute amounts of extraction solvent immobilized within the biodegradable agarose gel disc. A comparative microextraction technique termed solvent-impregnated agarose gel liquid phase microextraction (AG-LPME) was re-optimized and validated for the extraction of phenols in water. The method offered good linearity, ultra-trace LODs ranging 0.1-0.5µgL-1and satisfactory average of relative recovery (86.1-114.1%). The EMM was superior in terms of sensitivity and time-effectiveness compared to AG-LPME. Both techniques combine extraction and pre-concentration in mini-scaled approaches using an eco-friendly solvent holder that fulfil the green chemistry concept.
A greener method based on cloud point extraction was developed for removing phenol species including 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 4-nitrophenol (4-NP) in water samples by using the UV-Vis spectrophotometric method. The non-ionic surfactant DC193C was chosen as an extraction solvent due to its low water content in a surfactant rich phase and it is well-known as an environmentally-friendly solvent. The parameters affecting the extraction efficiency such as pH, temperature and incubation time, concentration of surfactant and salt, amount of surfactant and water content were evaluated and optimized. The proposed method was successfully applied for removing phenol species in real water samples.
The aeration strategy ranging from intermittent to continuous aeration in the REACT period of moving bed sequencing batch reactor (MBSBR) was evaluated for simultaneous removal of 4-chlorophenol (4-CP) and nitrogen. The results show that the removal rates of 4-CP and ammonium nitrogen (NH(4)(+)-N) increased with the increase of continuous aeration period. In the presence of 4-CP, NH(4)(+)-N removal was mainly by the assimilation process. The removal of NH(4)(+)-N to oxidized nitrogen via oxidation was only observed after 4-CP was completely degraded with sufficient aeration period provided indicating the inhibitory effect of 4-CP on nitrification. As the intermittent aeration strategy would lead to slower 4-CP degradation resulting in the delay of nitrification process, continuous aeration would be the preferred strategy in the simultaneous removal of 4-CP and nitrogen in the MBSBR system.
In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.
The effects of three preparation variables: CO(2) activation temperature, CO(2) activation time and KOH:char impregnation ratio (IR) on the 2,4,6-trichlorophenol (2,4,6-TCP) uptake and carbon yield of the activated carbon prepared from oil palm empty fruit bunch (EFB) were investigated. Based on the central composite design, two quadratic models were developed to correlate the three preparation variables to the two responses. The activated carbon preparation conditions were optimized using response surface methodology by maximizing both the 2,4,6-TCP uptake and activated carbon yield within the ranges studied. The optimum conditions for preparing activated carbon from EFB for adsorption of 2,4,6-TCP were found as follows: CO(2) activation temperature of 814 degrees C, CO(2) activation time of 1.9h and IR of 2.8, which resulted in 168.89 mg/g of 2,4,6-TCP uptake and 17.96% of activated carbon yield. The experimental results obtained agreed satisfactorily with the model predictions. The activated carbon prepared under optimum conditions was mesoporous with BET surface area of 1141 m(2)/g, total pore volume of 0.6 cm(3)/g and average pore diameter of 2.5 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.
This study investigated the adsorption potential of oil palm shell-based activated carbon to remove 2,4,6-trichlorophenol from aqueous solution using fixed-bed adsorption column. The effects of 2,4,6-trichlorophenol inlet concentration, feed flow rate and activated carbon bed height on the breakthrough characteristics of the adsorption system were determined. The regeneration efficiency of the oil palm shell-based activated carbon was evaluated using ethanol desorption technique. Through ethanol desorption, 96.25% of the adsorption sites could be recovered from the regenerated activated carbon.