Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Abdul Manas NH, Chong LY, Tesfamariam YM, Zulkharnain A, Mahmud H, Abang Mahmod DS, et al.
    J Biotechnol, 2020 Jun 20;317:16-26.
    PMID: 32348830 DOI: 10.1016/j.jbiotec.2020.04.011
    Bacterial pigments are potential substitute of chemical photosensitizer for dye-sensitized solar cell (DSSC) due to its non-toxic property and cost-effective production from microbial fermentation. Serratia nematodiphila YO1 was isolated from waterfall in Malaysia and identified using 16S ribosomal RNA. Characterization of the red pigment produced by the bacteria has confirmed the pigment as prodigiosin. Prodigiosin was produced from the fermentation of the bacteria in the presence of different oil substrates. Palm oil exhibited the best performance of cell growth and equivalent prodigiosin yield compared to olive oil and peanut oil. Prodigiosin produced with palm oil supplementation was 93 mg/l compared to 7.8 mg/l produced without supplementation, which recorded 11.9 times improvement. Specific growth rate of the cells improved 1.4 times when palm oil was supplemented in the medium. The prodigiosin pigment produced showed comparable performance as a DSSC sensitizer by displaying an open circuit voltage of 336.1 mV and a maximum short circuit current of 0.098 mV/cm2. This study stands a novelty in proving that the production of prodigiosin is favorable in the presence of palm oil substrate with high saturated fat content, which has not been studied before. This is also among the first bacterial prodigiosin tested as photosensitizer for DSSC application.
    Matched MeSH terms: Culture Media/pharmacology
  2. Rozali SE, Rashid KA, Taha RM
    ScientificWorldJournal, 2014;2014:457092.
    PMID: 25136669 DOI: 10.1155/2014/457092
    A successful protocol was established for micropropagation in two selected varieties of exotic ornamental plants, Calathea crotalifera. The effects of different sterilization techniques, explant type, and the combination and concentration of plant growth regulators on shoots induction were studied. The axillary shoot buds explants sprouted from rhizomes in soil free conditions showed high induction rate of shoots with lowest contamination percentage when treated with combination of 30% (v/v) NaOCl, 70% (v/v) ethanol, and 0.3% (w/v) HgCl2. In the present study, the highest number of multiple shoots was obtained in MS basal medium supplemented with 3.5 mg/L 6-Benzylaminopurine (BAP), 1.0 mg/L 1-Naphthaleneacetic acid (NAA), 3% sucrose, and 6 g/L plant agar for both varieties and was used as multiplication medium. Microshoots were highly induced when the young shoot bud explants were incised longitudinally prior subculture. Chlorophyll analysis was studied to test the effects of activated charcoal and L-glutamine on reduction of necrosis problem. The maximum roots induction was recorded on MS medium supplemented with 1.0 mg/L 1-Naphthaleneacetic acid (NAA) compared to indolebutyric acid (IBA). The complete regenerated plantlets were successfully acclimatized in the soilless medium under greenhouse condition. This is the first report of rapid mass propagation for C. crotalifera.
    Matched MeSH terms: Culture Media/pharmacology*
  3. Tan LK, Ooi PT, Carniel E, Thong KL
    PLoS One, 2014;9(8):e106329.
    PMID: 25170941 DOI: 10.1371/journal.pone.0106329
    Y. enterocolitica and Y. pseudotuberculosis are important food borne pathogens. However, the presence of competitive microbiota makes the isolation of Y. enterocolitica and Y. pseudotuberculosis from naturally contaminated foods difficult. We attempted to evaluate the performance of a modified Cefsulodin-Irgasan-Novobiocin (CIN) agar in the differentiation of Y. enterocolitica from non-Yersinia species, particularly the natural intestinal microbiota. The modified CIN enabled the growth of Y. enterocolitica colonies with the same efficiency as CIN and Luria-Bertani agar. The detection limits of the modified CIN for Y. enterocolitica in culture medium (10 cfu/ml) and in artificially contaminated pork (10(4) cfu/ml) were also comparable to those of CIN. However, the modified CIN provided a better discrimination of Yersinia colonies from other bacteria exhibiting Yersinia-like colonies on CIN (H2S-producing Citrobacter freundii, C. braakii, Enterobacter cloacae, Aeromonas hydrophila, Providencia rettgeri, and Morganella morganii). The modified CIN exhibited a higher recovery rate of Y. enterocolitica from artificially prepared bacterial cultures and naturally contaminated samples compared with CIN. Our results thus demonstrated that the use of modified CIN may be a valuable means to increase the recovery rate of food borne Yersinia from natural samples, which are usually contaminated by multiple types of bacteria.
    Matched MeSH terms: Culture Media/pharmacology
  4. Wong WK, Tan ZN, Lim BH, Mohamed Z, Olivos-Garcia A, Noordin R
    Parasitol Res, 2011 Feb;108(2):425-30.
    PMID: 20922423 DOI: 10.1007/s00436-010-2083-8
    Entamoeba histolytica is the etiologic agent for amoebiasis. The excretory-secretory (ES) products of the trophozoites contain virulence factors and antigens useful for diagnostic applications. Contaminants from serum supplements and dead trophozoites impede analysis of ES. Therefore, a protein-free medium that can sustain maximum viability of E. histolytica trophozoites for the longest time duration will enable collection of contaminant-free and higher yield of ES products. In the present study, we compared the efficacy of four types of media in maintaining ≥ 95% trophozoite viability namely Roswell Memorial Park Institute (RPMI-1640), Dulbecco's Modified Eagle Medium (DMEM), phosphate-buffered saline for amoeba (PBS-A), and Hank's balanced salt solution (HBSS). Concurrently, the effect of adding L: -cysteine and ascorbic acid (C&A) to each medium on the parasite viability was also compared. DMEM and RPMI 1640 showed higher viabilities as compared to PBS-A and HBSS. Only RPMI 1640 showed no statistical difference with the control medium for the first 4 h, however the ≥ 95% viability was only maintained for the first 2 h. The other protein-free media showed differences from the serum- and vitamin-free TYI-S-33 control media even after 1 h of incubation. When supplemented with C&A, all media were found to sustain higher trophozoite viabilities than those without the supplements. HBSS-C&A, DMEM-C&A, and RPMI 1640-C&A demonstrated no difference (P>0.05) in parasite viabilities when compared with the control medium throughout the 8-h incubation period. DMEM-C&A showed an eightfold increment in time duration of sustaining ≥ 95% parasite viability, i.e. 8 h, as compared to DMEM alone. Both RPMI 1640-C&A and HBSS-C&A revealed fourfold and threefold increments (i.e., 8 and 6 h, respectively), whereas PBS-A-C&A showed only one fold improvement (i.e., 2 h) as compared to the respective media without C&A. Thus, C&A-supplemented DMEM or RPMI are recommended for collection of ES products.
    Matched MeSH terms: Culture Media/pharmacology*
  5. Wan Nawawi WM, Jamal P, Alam MZ
    Bioresour Technol, 2010 Dec;101(23):9241-7.
    PMID: 20674345 DOI: 10.1016/j.biortech.2010.07.024
    This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range.
    Matched MeSH terms: Culture Media/pharmacology
  6. Cho EG, Hor YL, Kim HH, Rao VR, Engelmann F
    Cryo Letters, 2001 Nov-Dec;22(6):391-6.
    PMID: 11788881
    The role of pregrowth and preculture treatments in terms of both medium composition and exposure duration on survival of embryonic axes of Citrus madurensis after cryopreservation using the vitrification procedure was investigated. The optimal pregrowth treatment for excised embryonic axes was a 3-day treatment with 0.1M sucrose. Preculture was also essential in increasing survival after cryopreservation. Among the various media and treatment durations evaluated, a 24h-preculture of embryonic axes on medium with 0.3M sucrose and 0.5M glycerol was found to be optimal. Using these pregrowth and preculture conditions followed by treatment at 25 degrees C for 20 min each with a loading solution (0.4M sucrose + 2.0M glycerol) and then the PVS2 vitrification solution, direct immersion in liquid nitrogen, rapid rewarming, unloading in a 1.2M sucrose solution for 20 min and transfer of embryonic axes on recovery medium, 82.5% survival and regrowth without intermediary callus formation were obtained with C. madurensis embryonic axes.
    Matched MeSH terms: Culture Media/pharmacology*
  7. Vasanthan P, Jayaraman P, Kunasekaran W, Lawrence A, Gnanasegaran N, Govindasamy V, et al.
    Naturwissenschaften, 2016 Aug;103(7-8):62.
    PMID: 27379400 DOI: 10.1007/s00114-016-1387-7
    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.
    Matched MeSH terms: Culture Media/pharmacology*
  8. Ker-Woon C, Abd Ghafar N, Hui CK, Mohd Yusof YA
    BMC Cell Biol., 2014;15:19.
    PMID: 24885607 DOI: 10.1186/1471-2121-15-19
    Acacia honey is a natural product which has proven to have therapeutic effects on skin wound healing, but its potential healing effects in corneal wound healing have not been studied. This study aimed to explore the effects of Acacia honey (AH) on corneal keratocytes morphology, proliferative capacity, cell cycle, gene and protein analyses. Keratocytes from the corneal stroma of six New Zealand white rabbits were isolated and cultured until passage 1. The optimal dose of AH in the basal medium (FD) and medium containing serum (FDS) for keratocytes proliferation was identified using MTT assay. The morphological changes, gene and protein expressions of aldehyde dehydrogenase (ALDH), marker for quiescent keratocytes and vimentin, marker for fibroblasts were detected using q-RTPCR and immunocytochemistry respectively. Flowcytometry was performed to evaluate the cell cycle analysis of corneal keratocytes.
    Matched MeSH terms: Culture Media/pharmacology*
  9. Boo L, Selvaratnam L, Tai CC, Ahmad TS, Kamarul T
    J Mater Sci Mater Med, 2011 May;22(5):1343-56.
    PMID: 21461701 DOI: 10.1007/s10856-011-4294-7
    The use of mesenchymal stem cells (MSCs) in tissue repair and regeneration despite their multipotentiality has been limited by their cell source quantity and decelerating proliferative yield efficiency. A study was thus undertaken to determine the feasibility of using microcarrier beads in spinner flask cultures for MSCs expansion and compared to that of conventional monolayer cultures and static microcarrier cultures. Isolation and characterization of bone marrow derived MSCs were conducted from six adult New Zealand white rabbits. Analysis of cell morphology on microcarriers and culture plates at different time points (D0, D3, D10, D14) during cell culture were performed using scanning electron microscopy and bright field microscopy. Cell proliferation rates and cell number were measured over a period of 14 days, respectively followed by post-expansion characterization. MTT proliferation assay demonstrated a 3.20 fold increase in cell proliferation rates in MSCs cultured on microcarriers in spinner flask as compared to monolayer cultures (p < 0.05). Cell counts at day 14 were higher in those seeded on stirred microcarrier cultures (6.24 ± 0.0420 cells/ml) × 10(5) as compared to monolayer cultures (0.22 ± 0.004 cells/ml) × 10(5) and static microcarrier cultures (0.20 ± 0.002 cells/ml) × 10(5). Scanning electron microscopy demonstrated an increase in cell colonization of the cells on the microcarriers in stirred cultures. Bead-expanded MSCs were successfully differentiated into osteogenic and chondrogenic lineages. This system offers an improved and efficient alternative for culturing MSCs with preservation to their phenotype and multipotentiality.
    Matched MeSH terms: Culture Media/pharmacology
  10. Teh KY, Loh SH, Aziz A, Takahashi K, Effendy AWM, Cha TS
    Sci Rep, 2021 01 11;11(1):438.
    PMID: 33432049 DOI: 10.1038/s41598-020-79950-3
    Mangrove-dwelling microalgae are well adapted to frequent encounters of salinity fluctuations across their various growth phases but are lesser studied. The current study explored the adaptive changes (in terms of biomass, oil content and fatty acid composition) of mangrove-isolated C. vulgaris UMT-M1 cultured under different salinity levels (5, 10, 15, 20, 30 ppt). The highest total oil content was recorded in cultures at 15 ppt salinity (63.5% of dry weight) with uncompromised biomass productivity, thus highlighting the 'trigger-threshold' for oil accumulation in C. vulgaris UMT-M1. Subsequently, C. vulgaris UMT-M1 was further assessed across different growth phases under 15 ppt. The various short, medium and long-chain fatty acids (particularly C20:0), coupled with a high level of C18:3n3 PUFA reported at early exponential phase represents their physiological importance during rapid cell growth. Accumulation of C18:1 and C18:2 at stationary growth phase across all salinities was seen as cells accumulating substrate for C18:3n3 should the cells anticipate a move from stationary phase into new growth phase. This study sheds some light on the possibility of 'triggered' oil accumulation with uninterrupted growth and the participation of various fatty acid types upon salinity mitigation in a mangrove-dwelling microalgae.
    Matched MeSH terms: Culture Media/pharmacology
  11. Wan Afifudeen CL, Loh SH, Aziz A, Takahashi K, Effendy AWM, Cha TS
    Sci Rep, 2021 01 11;11(1):381.
    PMID: 33431982 DOI: 10.1038/s41598-020-79711-2
    Bioprospecting for biodiesel potential in microalgae primarily involves a few model species of microalgae and rarely on non-model microalgae species. Therefore, the present study determined changes in physiology, oil accumulation, fatty acid composition and biodiesel properties of a non-model microalga Messastrum gracile SE-MC4 in response to 12 continuous days of nitrate-starve (NS) and nitrate-replete (NR) conditions respectively. Under NS, the highest oil content (57.9%) was achieved despite reductions in chlorophyll content, biomass productivity and lipid productivity. However, under both NS and NR, palmitic acid and oleic acid remained as dominant fatty acids thus suggesting high potential of M. gracile for biodiesel feedstock consideration. Biodiesel properties analysis returned high values of cetane number (CN 61.9-64.4) and degree of unsaturation (DU 45.3-57.4) in both treatments. The current findings show the possibility of a non-model microalga to inherit superior ability over model species in oil accumulation for biodiesel development.
    Matched MeSH terms: Culture Media/pharmacology*
  12. Lulu T, Park SY, Ibrahim R, Paek KY
    J Biosci Bioeng, 2015 Jun;119(6):712-7.
    PMID: 25511788 DOI: 10.1016/j.jbiosc.2014.11.010
    The present study aimed to optimize the conditions for the production of adventitious roots from Eurycoma longifolia Jack, an important medicinal woody plant, in bioreactor culture. The effects of the type and concentration of auxin on root growth were studied, as well as the effects of the NH4(+):NO3(-) ratio on adventitious root growth and the production of phenolics and flavonoids. Approximately 5 g L(-1) fresh weight of adventitious roots was inoculated into a 3 L balloon-type bubble bioreactor, which contained 2 L 3/4 MS medium supplemented with 30 g L(-1) sucrose and cultures were maintained in the dark for 7 weeks at 24 ± 1°C. Higher concentrations of IBA (7.0 and 9.0 mg L(-1)) and NAA (5.0 mg L(-1)) enhanced the biomass and accumulation of total phenolics and flavonoids. The adventitious roots were thin, numerous, and elongated in 3/4 MS medium supplemented with 5.0 and 7.0 mg L(-1) IBA, whereas the lateral roots were shorter and thicker with 5.0 mg L(-1) NAA compared with IBA treatment. The optimum biomasses of 50.22 g L(-1) fresh weight and 4.60 g L(-1) dry weight were obtained with an NH4(+):NO3(-) ratio of 15:30. High phenolic and flavonoid productions (38.59 and 11.27 mg L(-1) medium, respectively) were also obtained with a ratio of 15:30. Analysis of the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity indicated higher antioxidant activity with an NH4(+):NO3(-) ratio of 30:15. These results suggest that balloon-type bubble bioreactor cultures are suitable for the large-scale commercial production of E. longifolia adventitious roots which contain high yield of bioactive compounds.
    Matched MeSH terms: Culture Media/pharmacology
  13. Barbour A, Philip K
    PLoS One, 2014;9(6):e100541.
    PMID: 24941127 DOI: 10.1371/journal.pone.0100541
    Salivaricins are bacteriocins produced by Streptococcus salivarius, some strains of which can have significant probiotic effects. S. salivarius strains were isolated from Malaysian subjects showing variable antimicrobial activity, metabolic profile, antibiotic susceptibility and lantibiotic production.
    Matched MeSH terms: Culture Media/pharmacology
  14. Azizan KA, Baharum SN, Mohd Noor N
    Molecules, 2012 Jul 03;17(7):8022-36.
    PMID: 22759915 DOI: 10.3390/molecules17078022
    Gas chromatography mass spectrometry (GC-MS) and headspace gas chromatography mass spectrometry (HS/GC-MS) were used to study metabolites produced by Lactococcus lactis subsp. cremoris MG1363 grown at a temperature of 30 °C with and without agitation at 150 rpm, and at 37 °C without agitation. It was observed that L. lactis produced more organic acids under agitation. Primary alcohols, aldehydes, ketones and polyols were identified as the corresponding trimethylsilyl (TMS) derivatives, whereas amino acids and organic acids, including fatty acids, were detected through methyl chloroformate derivatization. HS analysis indicated that branched-chain methyl aldehydes, including 2-methylbutanal, 3-methylbutanal, and 2-methylpropanal are degdradation products of isoleucine, leucine or valine. Multivariate analysis (MVA) using partial least squares discriminant analysis (PLS-DA) revealed the major differences between treatments were due to changes of amino acids and fermentation products.
    Matched MeSH terms: Culture Media/pharmacology*
  15. Chowdhury SR, Ng MH, Hassan NS, Aminuddin BS, Ruszymah BH
    Hum. Cell, 2012 Sep;25(3):69-77.
    PMID: 22968953
    This study was undertaken in order to identify the best culture strategy to expand and osteogenic differentiation of human bone marrow stem cells (hBMSCs) for subsequent bone tissue engineering. In this regard, the experiment was designed to evaluate whether it is feasible to bypass the expansion phase during hBMSCs differentiation towards osteogenic lineages by early induction, if not identification of suitable culture media for enhancement of hBMSCs expansion and osteogenic differentiation. It was found that introduction of osteogenic factors in alpha-minimum essential medium (αMEM) during expansion phase resulted in significant reduction of hBMSCs growth rate and osteogenic gene expressions. In an approach to identify suitable culture media, the growth and differentiation potential of hBMSCs were evaluated in αMEM, F12:DMEM (1:1; FD), and FD with growth factors. It was found that αMEM favors the expansion and osteogenic differentiation of hBMSCs compared to that in FD. However, supplementation of growth factors in FD, only during expansion phase, enhances the hBMSCs growth rate and significantly up-regulates the expression of CBFA-1 (the early markers of osteogenic differentiation) during expansion, and, other osteogenic genes at the end of induction compared to the cells in αMEM and FD. These results suggested that the expansion and differentiation phase of the hBMSCs should be separately and carefully timed. For bone tissue engineering, supplementation of growth factors in FD only during the expansion phase was sufficient to promote hBMSCs expansion and differentiation, and preferably the most efficient culture condition.
    Matched MeSH terms: Culture Media/pharmacology*
  16. Govindasamy V, Ronald VS, Abdullah AN, Ganesan Nathan KR, Aziz ZA, Abdullah M, et al.
    Cytotherapy, 2011 Nov;13(10):1221-33.
    PMID: 21929379 DOI: 10.3109/14653249.2011.602337
    BACKGROUND AIMS. Dental pulp stromal cells (DPSC) are considered to be a promising source of stem cells in the field of regenerative therapy. However, the usage of DPSC in transplantation requires large-scale expansion to cater for the need for clinical quantity without compromising current good manufacturing practice (cGMP). Existing protocols for cell culturing make use of fetal bovine serum (FBS) as a nutritional supplement. Unfortunately, FBS is an undesirable additive to cells because it carries the risk of transmitting viral and prion diseases. Therefore, the present study was undertaken to examine the efficacy of human platelet lysate (HPL) as a substitute for FBS in a large-scale set-up. METHODS. We expanded the DPSC in Dulbecco's modified Eagle's medium-knock-out (DMEM-KO) with either 10% FBS or 10% HPL, and studied the characteristics of DPSC at pre- (T25 culture flask) and post- (5-STACK chamber) large-scale expansion in terms of their identity, quality, functionality, molecular signatures and cytogenetic stability. RESULTS. In both pre- and post-large-scale expansion, DPSC expanded in HPL showed extensive proliferation of cells (c. 2-fold) compared with FBS; the purity, immune phenotype, colony-forming unit potential and differentiation were comparable. Furthermore, to understand the gene expression profiling, the transcriptomes and cytogenetics of DPSC expanded under HPL and FBS were compared, revealing similar expression profiles. CONCLUSIONS. We present a highly economized expansion of DPSC in HPL, yielding double the amount of cells while retaining their basic characteristics during a shorter time period under cGMP conditions, making it suitable for therapeutic applications.
    Matched MeSH terms: Culture Media/pharmacology*
  17. Wan Safwani WK, Makpol S, Sathapan S, Chua KH
    PMID: 22221649 DOI: 10.1186/1477-5751-11-3
    Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs.
    Matched MeSH terms: Culture Media/pharmacology
  18. Azaman SN, Ramakrishnan NR, Tan JS, Rahim RA, Abdullah MP, Ariff AB
    Biotechnol Appl Biochem, 2010 Aug;56(4):141-50.
    PMID: 20604747 DOI: 10.1042/BA20100104
    Induction strategies for the periplasmic production of recombinant human IFN-alpha2b (interferon-alpha2b) by recombinant Escherichia coli Rosetta-gami 2(DE3) were optimized in shake-flask cultures using response surface methodology based on the central composite design. The factors included in the present study were induction point, which related to the attenuance of the cell culture, IPTG (isopropyl beta-D-thiogalactoside) concentration and induction temperature. Second-order polynomial models were used to correlate the abovementioned factors to soluble periplasmic IFN-alpha2b formation and percentage of soluble IFN-alpha2b translocated to the periplasmic space of E. coli. The models were found to be significant and subsequently validated. The proposed induction strategies consisted of induction at an attenuance of 4 (measured as D600), IPTG concentration of 0.05 mM and temperature of 25 degrees C. The optimized induction strategy reduced inclusion-body formation as evidenced by electron microscopy and yielded 323.8 ng/ml of IFN-alpha2b in the periplasmic space with translocation of 74% of the total soluble product. In comparison with the non-optimized condition, soluble periplasmic production and the percentage of soluble IFN-alpha2b translocated to the periplasmic space obtained in optimized induction strategies were increased by approx. 20-fold and 1.4-fold respectively.
    Matched MeSH terms: Culture Media/pharmacology
  19. Al-Masawa ME, Wan Kamarul Zaman WS, Chua KH
    Sci Rep, 2020 12 09;10(1):21583.
    PMID: 33299022 DOI: 10.1038/s41598-020-78395-y
    The scarcity of chondrocytes is a major challenge for cartilage tissue engineering. Monolayer expansion is necessary to amplify the limited number of chondrocytes needed for clinical application. Growth factors are often added to improve monolayer culture conditions, promoting proliferation, and enhancing chondrogenesis. Limited knowledge on the biosafety of the cell products manipulated with growth factors in culture has driven this study to evaluate the impact of growth factor cocktail supplements in chondrocyte culture medium on chondrocyte genetic stability and tumorigenicity. The growth factors were basic fibroblast growth factor (b-FGF), transforming growth factor β2 (TGF β2), insulin-like growth factor 1 (IGF-1), insulin-transferrin-selenium (ITS), and platelet-derived growth factor (PD-GF). Nasal septal chondrocytes cultured in growth factor cocktail exhibited a significantly high proliferative capacity. Comet assay revealed no significant DNA damage. Flow cytometry showed chondrocytes were mostly at G0-G1 phase, exhibiting normal cell cycle profile with no aneuploidy. We observed a decreased tumour suppressor genes' expression (p53, p21, pRB) and no TP53 mutations or tumour formation after 6 months of implantation in nude mice. Our data suggest growth factor cocktail has a low risk of inducing genotoxic and tumorigenic effects on chondrocytes up to passage 6 with 16.6 population doublings. This preclinical tumorigenicity and genetic instability evaluation is crucial for further clinical works.
    Matched MeSH terms: Culture Media/pharmacology*
  20. Kwong PJ, Abdullah RB, Wan Khadijah WE
    Theriogenology, 2012 Sep 1;78(4):921-9.
    PMID: 22704387 DOI: 10.1016/j.theriogenology.2012.04.009
    This study was conducted to evaluate the efficiency of potassium simplex optimization medium with amino acids (KSOMaa) as a basal culture medium for caprine intraspecies somatic cell nuclear transfer (SCNT) and caprine-bovine interspecies somatic cell nuclear transfer (iSCNT) embryos. The effect of increased glucose as an energy substrate for late stage development of cloned caprine embryos in vitro was also evaluated. Enucleated caprine and bovine in vitro matured oocytes at metaphase II were reconstructed with caprine ear skin fibroblast cells for the SCNT and iSCNT studies. The cloned caprine and parthenogenetic embryos were cultured in either KSOMaa with 0.2 mM glucose for 8 days (Treatment 1) or KSOMaa for 2 days followed by KSOMaa with additional glucose at a final concentration of 2.78 mM for the last 6 days (Treatment 2). There were no significant differences in the cleavage rates of SCNT (80.7%) and iSCNT (78.0%) embryos cultured in KSOMaa medium. Both Treatment 1 and Treatment 2 could support in vitro development of SCNT and iSCNT embryos to the blastocyst stage. However, the blastocyst development rate of SCNT embryos was significantly higher (P < 0.05) in Treatment 2 compared to Treatment 1. Increasing glucose for later stage embryo development (8-cell stage onwards) during in vitro culture (IVC) in Treatment 2 also improved both caprine SCNT and iSCNT embryo development to the hatched blastocyst stage. In conclusion, this study shows that cloned caprine embryos derived from SCNT and iSCNT could develop to the blastocyst stage in KSOMaa medium supplemented with additional glucose (2.78 mM, final concentration) and this medium also supported hatching of caprine cloned blastocysts.
    Matched MeSH terms: Culture Media/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links