METHODS: Frontal view intraoral photographs fulfilling selection criteria were collected. Along the gingival margin, the gingival conditions of individual sites were labelled as healthy, diseased, or questionable. Photographs were randomly assigned as training or validation datasets. Training datasets were input into a novel artificial intelligence system and its accuracy in detection of gingivitis including sensitivity, specificity, and mean intersection-over-union were analysed using validation dataset. The accuracy was reported according to STARD-2015 statement.
RESULTS: A total of 567 intraoral photographs were collected and labelled, of which 80% were used for training and 20% for validation. Regarding training datasets, there were total 113,745,208 pixels with 9,270,413; 5,711,027; and 4,596,612 pixels were labelled as healthy, diseased, and questionable respectively. Regarding validation datasets, there were 28,319,607 pixels with 1,732,031; 1,866,104; and 1,116,493 pixels were labelled as healthy, diseased, and questionable, respectively. AI correctly predicted 1,114,623 healthy and 1,183,718 diseased pixels with sensitivity of 0.92 and specificity of 0.94. The mean intersection-over-union of the system was 0.60 and above the commonly accepted threshold of 0.50.
CONCLUSIONS: Artificial intelligence could identify specific sites with and without gingival inflammation, with high sensitivity and high specificity that are on par with visual examination by human dentist. This system may be used for monitoring of the effectiveness of patients' plaque control.
MATERIALS AND METHODS: A cross-over study was conducted in 2 phases of 6 weeks duration each with an intervening 2-week washout. Twenty-five participants meeting inclusion criteria were randomly allocated into groups A (13) and B (12). In phase 1: group A was assigned T1 and group B was assigned T2. Toothbrushing was advised twice daily for 2 minutes by modified bass technique after meals. At baseline, 3 weeks and 6 weeks the wear index (WI), plaque index (PI) and gingival index (GI) were recorded. Following washout in phase 2 group A was assigned T2 and group B was assigned T1 and the same study protocol was followed.
RESULTS: Intra-group comparison between baseline, 3 and 6 weeks by the paired t-test resulted in significant reduction in PI, GI and increase in WI (p <0.05) for T1 and T2. Inter-group comparison using the unpaired t-test resulted in WI for T1 being significantly higher (p <0.05) at 3 weeks and lower at 6 weeks (p <0.05) compared to T2. PI for T1 was significantly higher at 3 weeks (p <0.05) and lower at 6 weeks (p <0.05) compared to T2. No significant difference in GI scores between T1 and T2 at 3 and 6 weeks was observed (p >0.05).
CONCLUSION: Charcoal infused bristles demonstrated less wear and more plaque removal compared to nylon bristles.
CLINICAL SIGNIFICANCE: Charcoal infused bristles demonstrate less wear compared to nylon bristles.
MATERIAL AND METHODS: A PRISMA-compliant systematic search of literature was done from the MEDLINE, CENTRAL, Science Direct, PubMed and Google Scholar. Literature that fulfilled eligibility criteria was identified. Data measuring plaque score and bleeding score were extracted. Qualitative and random-effects meta-analyses were conducted.
RESULTS: From 1736 titles and abstracts screened, eight articles were utilized for qualitative analysis, while five were selected for meta-analysis. The pooled effect estimates of SMD and 95% CI were -0.07 [-0.60 to 0.45] with an χ2 statistic of 0.32 (p = 0.0001), I2 = 80% as anti-plaque function and 95% CI were -2.07 [-4.05 to -0.10] with an χ2 statistic of 1.67 (p = 0.02), I2 = 82%.
CONCLUSION: S. persica chewing stick is a tool that could control plaque, comparable to a standard toothbrush. Further, it has a better anti-gingivitis effect and can be used as an alternative.
OBJECTIVE: The chief aim of the study was to evaluate microbial retention on the salivary pellicle on treatment with oral rinses (CHX & EO)/PS (mimicking after meals use of mouth wash/PS).
METHODS: Noordini's Artifical Mouth model was used for developing the single species biofilm with early microbial colonizers of oral biofilm (A. viscosus, Strep. mitis and Strep. sanguinis respectively). The microbial retention on use of oral rinses comprising of CHX and EO as an active ingredients respectively was compared with Curcumin PS. For evaluating the microbial retention, the pellicle with microbial inoculation was developed on the glass beads in the mouth model. Subsequently the respective single specie biofilm was exposed to the mouth wash and PS after inoculation. It mimicked as use of mouth wash/PS after meals. The bacterial count in the dental biofilm was evaluated on serial dilution (CFU/ml). Sterile deionized water was used as a negative control. For qualitative analysis, Scanning electron microscope (SEM) was used to evaluate the microbial count.
RESULTS: From the data it was observed that for the treatment of single species experimental biofilm with commercially available mouth rinses (CHX & EO) and PS (curcumin), there was significant retention for S.mitis, S.sanguinis and A.viscosus. There was no significant difference observed between PS and CHX treated single species biofilm. Whereas a significant difference was observed between EO treated biofilms and CHX/PS treated biofilms (p⩽ 0.05).
CONCLUSION: It can be concluded from the results that curcumin PS and CHX should not be used after meals whereas EO containing mouth rinse can be used to maintain the oral mocroflora.
OBJECTIVES: To compare manual and powered toothbrushes in everyday use, by people of any age, in relation to the removal of plaque, the health of the gingivae, staining and calculus, dependability, adverse effects and cost.
SEARCH METHODS: We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (to 23 January 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2014, Issue 1), MEDLINE via OVID (1946 to 23 January 2014), EMBASE via OVID (1980 to 23 January 2014) and CINAHL via EBSCO (1980 to 23 January 2014). We searched the US National Institutes of Health Trials Register and the WHO Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases.
SELECTION CRITERIA: Randomised controlled trials of at least four weeks of unsupervised powered toothbrushing versus manual toothbrushing for oral health in children and adults.
DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by The Cochrane Collaboration. Random-effects models were used provided there were four or more studies included in the meta-analysis, otherwise fixed-effect models were used. Data were classed as short term (one to three months) and long term (greater than three months).
MAIN RESULTS: Fifty-six trials met the inclusion criteria; 51 trials involving 4624 participants provided data for meta-analysis. Five trials were at low risk of bias, five at high and 46 at unclear risk of bias.There is moderate quality evidence that powered toothbrushes provide a statistically significant benefit compared with manual toothbrushes with regard to the reduction of plaque in both the short term (standardised mean difference (SMD) -0.50 (95% confidence interval (CI) -0.70 to -0.31); 40 trials, n = 2871) and long term (SMD -0.47 (95% CI -0.82 to -0.11; 14 trials, n = 978). These results correspond to an 11% reduction in plaque for the Quigley Hein index (Turesky) in the short term and 21% reduction long term. Both meta-analyses showed high levels of heterogeneity (I(2) = 83% and 86% respectively) that was not explained by the different powered toothbrush type subgroups.With regard to gingivitis, there is moderate quality evidence that powered toothbrushes again provide a statistically significant benefit when compared with manual toothbrushes both in the short term (SMD -0.43 (95% CI -0.60 to -0.25); 44 trials, n = 3345) and long term (SMD -0.21 (95% CI -0.31 to -0.12); 16 trials, n = 1645). This corresponds to a 6% and 11% reduction in gingivitis for the Löe and Silness index respectively. Both meta-analyses showed high levels of heterogeneity (I(2) = 82% and 51% respectively) that was not explained by the different powered toothbrush type subgroups.The number of trials for each type of powered toothbrush varied: side to side (10 trials), counter oscillation (five trials), rotation oscillation (27 trials), circular (two trials), ultrasonic (seven trials), ionic (four trials) and unknown (five trials). The greatest body of evidence was for rotation oscillation brushes which demonstrated a statistically significant reduction in plaque and gingivitis at both time points.
AUTHORS' CONCLUSIONS: Powered toothbrushes reduce plaque and gingivitis more than manual toothbrushing in the short and long term. The clinical importance of these findings remains unclear. Observation of methodological guidelines and greater standardisation of design would benefit both future trials and meta-analyses.Cost, reliability and side effects were inconsistently reported. Any reported side effects were localised and only temporary.