Displaying publications 1 - 20 of 260 in total

Abstract:
Sort:
  1. Yang Y, Gupta VK, Du Y, Aghbashlo M, Show PL, Pan J, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124800.
    PMID: 37178880 DOI: 10.1016/j.ijbiomac.2023.124800
    Mucilages are natural compounds consisting mainly of polysaccharides with complex chemical structures. Mucilages also contain uronic acids, proteins, lipids, and bioactive compounds. Because of their unique properties, mucilages are used in various industries, including food, cosmetics, and pharmaceuticals. Typically, commercial gums are composed only of polysaccharides, which increase their hydrophilicity and surface tension, reducing their emulsifying ability. As a result of the presence of proteins in combination with polysaccharides, mucilages possess unique emulsifying properties due to their ability to reduce surface tension. In recent years, various studies have been conducted on using mucilages as emulsifiers in classical and Pickering emulsions because of their unique emulsifying feature. Studies have shown that some mucilages, such as yellow mustard, mutamba, and flaxseed mucilages, have a higher emulsifying capacity than commercial gums. A synergistic effect has also been shown in some mucilages, such as Dioscorea opposita mucilage when combined with commercial gums. This review article investigates whether mucilages can be used as emulsifiers and what factors affect their emulsifying properties. A discussion of the challenges and prospects of using mucilages as emulsifiers is also presented in this review.
    Matched MeSH terms: Emulsions/chemistry
  2. Han W, Chai X, Zaaboul F, Sun Y, Tan CP, Liu Y
    Food Chem, 2023 Nov 30;427:136656.
    PMID: 37393637 DOI: 10.1016/j.foodchem.2023.136656
    The effect of different types of monoglycerides, including monopalmitin, capryl monoglyceride (GMB), and succinylated monoglyceride (GMSA) in combination with palm kernel stearin (PKS) and beeswax (BW), on the formation, crystal network structure, and partial coalescence properties of aerated emulsions (20 % w/w fat) was investigated. The stability of BW and PKS crystals with a 1 % concentration of GMSA and GMB, respectively, in the oil phase was lower than the other crystals. BW-GMSA and PKS-GMB crystals exhibited a lower crystallization rate, higher contact angles and no significant peak shift in the small-angle X-ray scattering results. The BW-GMSA and PKS-GMB emulsions had a lower nucleation rate in the bulk and a higher nucleation rate at the interface, resulting in a higher fraction of crystals adsorbed at the oil/water interface. This reduced the number of interfacial proteins and led to a high degree of partial coalescence and the formation of stable aerated networks.
    Matched MeSH terms: Emulsions/chemistry
  3. Ng SW, Chong WT, Soo YT, Tang TK, Ab Karim NA, Phuah ET, et al.
    PLoS One, 2022;17(8):e0271512.
    PMID: 36044467 DOI: 10.1371/journal.pone.0271512
    Palm pressed fibre (PPF) is a lignocellulose biomass generated from palm oil mill that is rich in cellulose. The present work aimed to combine acid hydrolysis followed by high-pressure homogenisation (HPH) to produce nanocrystal cellulose (CNC) with enhanced physicochemical properties from PPF. PPF was alkaline treated, bleached, acid hydrolysed and homogenised under high pressure condition to prepare CNC. The effects of homogenisation pressure (10, 30, 50, 70 MPa) and cycles (1, 3, 5, 7) on the particle size, zeta potential and rheological properties of CNC produced were investigated. HPH was capable of producing CNC with better stability. Results revealed that utilizing 1 cycle of homogenisation at a pressure of 50 MPa resulted in CNC with the smallest dimension, highest aspect ratio, moderate viscosity and exceptionally high zeta potential. Subsequently, 0.15% (CNC 0.15 -PE) and 0.30% (CNC 0.30 -PE) of CNC was used to stabilise oil-in-water emulsions and their stability was evaluated against different pH, temperature and ionic strength. All the CNC-stabilised emulsions demonstrated good thermal stability. CNC 0.30 -PE exhibited larger droplets but higher stability than CNC 0.15 -PE. In short, CNC with gel like structure has a promising potential to serve as a natural Pickering emulsifier to stabilise oil-in-water emulsion in various food applications.
    Matched MeSH terms: Emulsions/chemistry
  4. Haryati Yaacob, Mohd Rosli Hainin, Ahmad Safuan, Chag FL
    Sains Malaysiana, 2014;43:467-474.
    Quality of bond between layers of asphaltic concrete course is a key element to ensure the performance of a modern asphalt pavement. A proper interlayer bond ensures the structural integrity of the pavement and prevents possible distresses from occurring within the designed service life. In Malaysia, delamination is a common distress related to insufficient degree of adhesion though slippage failure can be occasionally encountered. Generally, bond development is closely related to the design factors and construction factors. This paper however focused on the construction factors only, hoping to provide some useful information which might be overlooked by the contractors during construction but is of extreme important especially in enhancing the bond development in the asphalt layers. The construction factors in particular interest discussed in this paper include curing time of asphalt emulsion, surface condition of a pavement and technology and quality of workmanship and construction. It is important to note that both design factors and construction factors are inter-related in optimizing the degree of adhesion. Thus, all factors need to be carefully identified and fulfilled in order to maximize the bond strength between pavement surfacing layers for a better quality and longer service life of pavement in Malaysia.
    Matched MeSH terms: Emulsions
  5. Goyal RK, Jayakumar NS, Hashim MA
    J Hazard Mater, 2011 Nov 15;195:383-90.
    PMID: 21920664 DOI: 10.1016/j.jhazmat.2011.08.056
    A comparative study on the optimization of process parameters of an emulsion ionic liquid membrane (EILM) by experimental work and response surface methodology (RSM) has been carried out. EILM was prepared by using kerosene as solvent, Span 80 as surfactant, NaOH as internal reagent, a hydrophobic ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM](+)[NTf(2)](-)) as a stabilizer and a second ionic liquid tri-n-octylmethylammonium chloride (TOMAC) as a carrier. The prepared EILM was used to separate and concentrate Cr from wastewaters. The comparison between the experimentally optimized and the RSM optimized values was accomplished by optimizing the following parameters: homogenization speed, carrier concentration, internal phase concentration, agitation speed, treat ratio, internal to membrane phase ratio, surfactant concentration and pH of the feed phase. The comparison showed that all the values were in good agreement except for the internal phase concentration and the treat ratio. It was observed that the stability provided by [BMIM](+)[NTf(2)](-) decreased as the extraction progressed due to its high density. Nevertheless, a good stability could be obtained by the combination of [BMIM](+)[NTf(2)](-) and Span 80 during extraction process.
    Matched MeSH terms: Emulsions*
  6. Teo SH, Chee CY, Fahmi MZ, Wibawa Sakti SC, Lee HV
    Molecules, 2022 Oct 23;27(21).
    PMID: 36363998 DOI: 10.3390/molecules27217170
    In the past few years, the research on particle-stabilized emulsion (Pickering emulsion) has mainly focused on the usage of inorganic particles with well-defined shapes, narrow size distributions, and chemical tunability of the surfaces such as silica, alumina, and clay. However, the presence of incompatibility of some inorganic particles that are non-safe to humans and the ecosystem and their poor sustainability has led to a shift towards the development of materials of biological origin. For this reason, nano-dimensional cellulose (nanocellulose) derived from natural plants is suitable for use as a Pickering material for liquid interface stabilization for various non-toxic product formulations (e.g., the food and beverage, cosmetic, personal care, hygiene, pharmaceutical, and biomedical fields). However, the current understanding of nanocellulose-stabilized Pickering emulsion still lacks consistency in terms of the structural, self-assembly, and physio-chemical properties of nanocellulose towards the stabilization between liquid and oil interfaces. Thus, this review aims to provide a comprehensive study of the behavior of nanocellulose-based particles and their ability as a Pickering functionality to stabilize emulsion droplets. Extensive discussion on the characteristics of nanocelluloses, morphology, and preparation methods that can potentially be applied as Pickering emulsifiers in a different range of emulsions is provided. Nanocellulose's surface modification for the purpose of altering its characteristics and provoking multifunctional roles for high-grade non-toxic applications is discussed. Subsequently, the water-oil stabilization mechanism and the criteria for effective emulsion stabilization are summarized in this review. Lastly, we discuss the toxicity profile and risk assessment guidelines for the whole life cycle of nanocellulose from the fresh feedstock to the end-life of the product.
    Matched MeSH terms: Emulsions/chemistry
  7. Ahmad A, Fazial FF, Khalil HPSA, Fazry S, Lazim A
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124816.
    PMID: 37182623 DOI: 10.1016/j.ijbiomac.2023.124816
    Starch nanocrystals (SNCs) are tiny particles that possess unique qualities due to their small size, such as increased crystallinity, thin sheet structure, low permeability, and strong resistance to digestion. Although sago starch nanocrystals (SNCs) are naturally hydrophilic, their properties can be modified through chemical modifications to make them more versatile for various applications. In this study, the esterification process was used to modify SNCs using lauroyl chloride (LC) to enhance their surface properties. Three different ratios of LC to SNC were tested to determine the impact on the modified SNC (mSNC). The chemical changes in the mSNC were analyzed using FTIR and 1H NMR spectroscopy. ##The results showed that as the amount of LC increased, the degree of substitution (DS) also increased, which reduced the crystallinity of the mSNC and its thermal stability. However, the esterification process also improved the hydrophobicity of the SNC, making it more amphiphilic. The emulsification capabilities of the mSNC were investigated using a Pickering emulsion, and the results showed that the emulsion made from mSNC-1.0 had better stability than the one made from pristine SNC. This study highlights the potential of SNC as a particle emulsifier and demonstrates how esterification can improve its emulsification capabilities.
    Matched MeSH terms: Emulsions/chemistry
  8. Abd Rahim FN, Wan Ibadullah WZ, Saari N, Brishti FH, Mustapha NA, Ahmad N, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 3):124908.
    PMID: 37217045 DOI: 10.1016/j.ijbiomac.2023.124908
    Rice bran protein concentrates (RBPC) were extracted using mild alkaline solvents (pH: 8, 9, 10). The physicochemical, thermal, functional, and structural aspects of freeze-drying (FD) and spray-drying (SD) were compared. FD and SD of RBPC had porous and grooved surfaces, with FD having non-collapsed plates and SD being spherical. Alkaline extraction increases FD's protein concentration and browning, whereas SD inhibits browning. According to amino acid profiling, RBPC-FD9's extraction optimizes and preserves amino acids. A tremendous particle size difference was prominent in FD, thermally stable at a minimal maximum of 92 °C. Increased pH extraction gives FD greater exposal surface hydrophobicity and positively relates to denaturation enthalpy. Mild pH extraction and drying significantly impacted solubility, improved emulsion properties, and foaming properties of RBPC as observed in acidic, neutral, and alkaline environments. RBPC-FD9 and RBPC-SD10 extracts exhibit outstanding foaming and emulsion activity in all pH conditions, respectively. Appropriate drying selection, RBPC-FD or SD potentially employed as foaming/emulsifier agent or meat analog.
    Matched MeSH terms: Emulsions/chemistry
  9. Yu H, Zheng Y, Zhou C, Liu L, Wang L, Cao J, et al.
    Carbohydr Polym, 2024 Feb 01;325:121583.
    PMID: 38008470 DOI: 10.1016/j.carbpol.2023.121583
    The potential of ultrasonication-driven molecular self-assembly of whey protein isolate (WPI) with chitosan (CS)/chitooligosaccharide (COS) to stabilize Pickering emulsions was examined, based on CS/COS ligands-induced partial unfolding in remodeling the Pickering particles features. Multi-spectral analysis suggested obvious changes in conformational structures of WPI due to interaction with CS/COS, with significantly higher unfolding degrees of WPI induced by COS. Non-covalent interactions were identified as the major forces for WPI-CS/COS conjugates. Ultrasonication enhanced electrostatic interaction between CS's -NH3 groups and WPI's -COO- groups which improved emulsification activity and storability of WPI-COS stabilized Pickering emulsion. This was attributed to increased surface hydrophobicity and decreased particle size compared to WPI-CS associated with differential unfolding degrees induced by different saccharide ligands. CLSM and SEM consistently observed smaller emulsion droplets in WPI-COS complexes than WPI-CS/COS particles tightly adsorbed at the oil-water interface. The electrostatic self-assembly of WPI with CS/COS greatly enhanced the encapsulation efficiency of quercetin than those stabilized by WPI alone and ultrasound further improved encapsulation efficiency. This corresponded well with the quantitative affinity parameters between quercetin and WPI-CS/COS complexes. This investigation revealed the great potential of glycan ligands-induced conformational transitions of extrinsic physical disruption in tuning Pickering particle features.
    Matched MeSH terms: Emulsions/chemistry
  10. Low JY, Khe CS, Usman F, Hassan YM, Lai CW, You KY, et al.
    Environ Res, 2024 Feb 15;243:117840.
    PMID: 38081342 DOI: 10.1016/j.envres.2023.117840
    Since the establishment of the first global refinery in 1856, crude oil has remained one of the most lucrative natural resources worldwide. However, during the extraction process from reservoirs, crude oil gets contaminated with sediments, water, and other impurities. The presence of pressure, shear forces, and surface-active compounds in crude oil leads to the formation of unwanted oil/water emulsions. These emulsions can take the form of water-in-oil (W/O) emulsions, where water droplets disperse continuously in crude oil, or oil-in-water (O/W) emulsions, where crude oil droplets are suspended in water. To prevent the spread of water and inorganic salts, these emulsions need to be treated and eliminated. In existing literature, different demulsification procedures have shown varying outcomes in effectively treating oil/water emulsions. The observed discrepancies have been attributed to various factors such as temperature, salinity, pH, droplet size, and emulsifier concentrations. It is crucial to identify the most effective demulsification approach for oil/water separation while adhering to environmental regulations and minimizing costs for the petroleum sector. Therefore, this study aims to explore and review recent advancements in two popular demulsification techniques: chemical demulsification and magnetic nanoparticles-based (MNP) demulsification. The advantages and disadvantages of each technique are assessed, with the magnetic approach emerging as the most promising due to its desirable efficiency and compliance with environmental and economic concerns. The findings of this report are expected to have a significant impact on the overall process of separating oil and water, benefiting the oil and gas industry, as well as other relevant sectors in achieving the circular economy.
    Matched MeSH terms: Emulsions/chemistry
  11. Mat Yusoff M, Gordon MH, Ezeh O, Niranjan K
    Food Chem, 2016 Nov 15;211:400-8.
    PMID: 27283648 DOI: 10.1016/j.foodchem.2016.05.050
    This paper reports on the extraction of Moringa oleifera (MO) oil by using aqueous enzymatic extraction (AEE) method. The effect of different process parameters on the oil recovery was discovered by using statistical optimization, besides the effect of selected parameters on the formation of its oil-in-water cream emulsions. Within the pre-determined ranges, the use of pH 4.5, moisture/kernel ratio of 8:1 (w/w), and 300stroke/min shaking speed at 40°C for 1h incubation time resulted in highest oil recovery of approximately 70% (goil/g solvent-extracted oil). These optimized parameters also result in a very thin emulsion layer, indicating minute amount of emulsion formed. Zero oil recovery with thick emulsion were observed when the used aqueous phase was re-utilized for another AEE process. The findings suggest that the critical selection of AEE parameters is key to high oil recovery with minimum emulsion formation thereby lowering the load on the de-emulsification step.
    Matched MeSH terms: Emulsions/analysis; Emulsions/metabolism
  12. Rehman FU, Shah KU, Shah SU, Khan IU, Khan GM, Khan A
    Expert Opin Drug Deliv, 2017 Nov;14(11):1325-1340.
    PMID: 27485144 DOI: 10.1080/17425247.2016.1218462
    INTRODUCTION: Lipid-based drug delivery systems (LBDDS) are the most promising technique to formulate the poorly water soluble drugs. Nanotechnology strongly influences the therapeutic performance of hydrophobic drugs and has become an essential approach in drug delivery research. Self-nanoemulsifying drug delivery systems (SNEDDS) are a vital strategy that combines benefits of LBDDS and nanotechnology. SNEDDS are now preferred to improve the formulation of drugs with poor aqueous solubility. Areas covered: The review in its first part shortly describes the LBDDS, nanoemulsions and clarifies the ambiguity between nanoemulsions and microemulsions. In the second part, the review discusses SNEDDS and elaborates on the current developments and modifications in this area without discussing their associated preparation techniques and excipient properties. Expert opinion: SNEDDS have exhibit the potential to increase the bioavailability of poorly water soluble drugs. The stability of SNEDDS is further increased by solidification. Controlled release and supersaturation can be achieved, and are associated with increased patient compliance and improved drug loads, respectively. Presence of biodegradable ingredients and ease of large-scale manufacturing combined with a lot of 'drug-targeting opportunities' give SNEDDS a clear distinction and prominence over other solubility enhancement techniques.
    Matched MeSH terms: Emulsions/administration & dosage*; Emulsions/chemistry
  13. Choudhury H, Gorain B, Chatterjee B, Mandal UK, Sengupta P, Tekade RK
    Curr Pharm Des, 2017;23(17):2504-2531.
    PMID: 27908273 DOI: 10.2174/1381612822666161201143600
    BACKGROUND: Most of the active pharmaceutical ingredients discovered recently in pharmaceutical field exhibits poor aqueous solubility that pose major problem in their oral administration. The oral administration of these drugs gets further complicated due to their short bioavailability, inconsistent absorption and inter/intra subject variability.

    METHODS: Pharmaceutical emulsion holds a significant place as a primary choice of oral drug delivery system for lipophilic drugs used in pediatric and geriatric patients. Pharmacokinetic studies on nanoemulsion mediated drugs delivery approach indicates practical feasibility in regards to their clinical translation and commercialization.

    RESULTS: This review article is to provide an updated understanding on pharmacokinetic and pharmacodynamic features of nanoemulsion delivered via oral, intravenous, topical and nasal route.

    CONCLUSION: The article is of huge interest to formulation scientists working on range of lipophilic drug molecules intended to be administered through oral, intravenous, topical and nasal routes for vivid medical benefits.

    Matched MeSH terms: Emulsions/administration & dosage*; Emulsions/chemistry*
  14. Ali TH, Hussen RS, Heidelberg T
    Colloids Surf B Biointerfaces, 2014 Nov 1;123:981-5.
    PMID: 25465761 DOI: 10.1016/j.colsurfb.2014.10.054
    A series of sugar-based surfactants, involving a single hydrophobic chain (C12) and two side-by-side arranged head groups, was prepared form simple glucose precursors. All surfactants were highly water soluble and exhibited exclusively micellar assemblies. This behavior makes them interesting candidates for oil in water emulsifiers.
    Matched MeSH terms: Emulsions/chemistry*
  15. Yahaya Khan M, Abdul Karim ZA, Hagos FY, Aziz AR, Tan IM
    ScientificWorldJournal, 2014;2014:527472.
    PMID: 24563631 DOI: 10.1155/2014/527472
    Water-in-diesel emulsion (WiDE) is an alternative fuel for CI engines that can be employed with the existing engine setup with no additional engine retrofitting. It has benefits of simultaneous reduction of both NO x and particulate matters in addition to its impact in the combustion efficiency improvement, although this needs further investigation. This review paper addresses the type of emulsion, the microexplosion phenomenon, emulsion stability and physiochemical improvement, and effect of water content on the combustion and emissions of WiDE fuel. The review also covers the recent experimental methodologies used in the investigation of WiDE for both transport and stationary engine applications. In this review, the fuel injection pump and spray nozzle arrangement has been found to be the most critical components as far as the secondary atomization is concerned and further investigation of the effect of these components in the microexplosion of the emulsion is suggested to be center of focus.
    Matched MeSH terms: Emulsions/chemistry*
  16. Tang SY, Sivakumar M, Nashiru B
    Colloids Surf B Biointerfaces, 2013 Feb 1;102:653-8.
    PMID: 23107943 DOI: 10.1016/j.colsurfb.2012.08.036
    The present investigation focuses in investigating the effect of osmotic pressure, gelling on the mean droplet diameter, polydispersity index, droplet size stability of the developed novel Aspirin containing water-in-oil-in-water (W/O/W) nano multiple emulsion. The aspirin-loaded nano multiple emulsion formulation was successfully generated using two-stage ultrasonic cavitational emulsification which had been reported in author's previous study. The osmotic behavior of ultrasonically prepared nano multiple emulsions were also examined with different glucose concentrations both in the inner and outer aqueous phases. In addition, introducing gelatin into the formulation also observed to play an important role in preventing the interdroplet coalescence via the formation of interfacial rigid film. Detailed studies were also made on the possible mechanisms of water migration under osmotic gradient which primarily caused by the permeation of glucose. Besides, the experimental results have shown that the interfacial tension between the two immiscible phases decreases with varying the composition of organic phase. Although the W/O/W emulsion prepared with the inner/outer glucose weight ratio of 1-0.5% (w/w) showed an excellent droplet stability, the formulation containing 0.5% (w/w) glucose in the inner aqueous phase appeared to be the most stable with minimum change in the mean droplet size upon one-week storage period. Based on the optimization, nano multiple emulsion droplets with the mean droplet diameter of around 400 nm were produced using 1.25% (w/w) Span 80 and 0.5% Cremophore EL. Overall, our investigation makes a pathway in proving that the use of ultrasound cavitation is an efficient yet promising approach in the generation of stable and uniform nano multiple emulsions and could be used in the encapsulation of various active pharmaceutical ingredients in the near future.
    Matched MeSH terms: Emulsions/chemistry*
  17. Han NS, Basri M, Abd Rahman MB, Abd Rahman RN, Salleh AB, Ismail Z
    J Cosmet Sci, 2012 Sep-Oct;63(5):333-44.
    PMID: 23089355
    Oil-in-water (O/W) nanoemulsions play an important key role in transporting bioactive compounds into a range of cosmeceutical products to the skin. Small droplet sizes have an inherent stability against creaming, sedimentation, flocculation, and coalescence. O/W emulsions varying in manufacturing process were prepared. The preparation and characterization of O/W nanoemulsions with average diameters of as low as 62.99 nm from palm oil esters were carried out. This was achieved using rotor-stator homogenizer and ultrasonic cavitation. Ultrasonic cell was utilized for the emulsification of palm oil esters and water in the presence of mixed surfactants, Tween 80 and Span 80 emulsions with a mean droplet size of 62.99 nm and zeta potential value at -37.8 mV. Results were comparable with emulsions prepared with rotor-stator homogenizer operated at 6000 rpm for 5 min. The stability of the emulsions was evaluated through rheology measurement properties. This included non-Newtonian viscosity, elastic modulus G', and loss modulus G″. A highly stable emulsion was prepared using ultrasonic cavitation comprising a very small particle size with higher zeta potential value and G' > G″ demonstrating gel-like behavior.
    Matched MeSH terms: Emulsions/chemistry*
  18. Goyal RK, Jayakumar NS, Hashim MA
    J Hazard Mater, 2011 Nov 15;195:55-61.
    PMID: 21962862 DOI: 10.1016/j.jhazmat.2011.03.024
    This study focuses on the role of a hydrophobic ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMIM](+)[NTf(2)](-) in the preparation of emulsion liquid membrane (ELM) phase containing kerosene as solvent, Span 80 as surfactant, NaOH as internal phase and TOMAC (tri-n-octylmethylammonium chloride) a second ionic liquid as carrier. The first time used [BMIM](+)[NTf(2)](-) in ELM was found to play the role of a stabilizer. The emulsion prepared using [BMIM](+) [NTf(2)](-) has a long period of stability of about 7h (at 3% (w/w) of [BMIM](+)[NTf(2)](-)) which otherwise has a brief stability up to only 7 min. The stability of the emulsion increases with the increase in concentration of [BMIM](+)[NTf(2)](-) up to 3% (w/w). Nevertheless, with further increase in concentration of [BMIM](+)[NTf(2)](-), a reduction in the stability occurs. The extraction experiments were carried out after holding the ELM for 2h after the preparation and a removal efficiency of approximately 80% was obtained for Cr. The destabilization of the emulsion was studied by observing the change in the interface height. An empirical correlation for the stability of the emulsion has been proposed.
    Matched MeSH terms: Emulsions*
  19. Ng YS, Jayakumar NS, Hashim MA
    J Hazard Mater, 2010 Dec 15;184(1-3):255-60.
    PMID: 20832168 DOI: 10.1016/j.jhazmat.2010.08.030
    The percentage removal of phenol from aqueous solution by emulsion liquid membrane and emulsion leakage was investigated experimentally for various parameters such as membrane:internal phase ratio, membrane:external phase ratio, emulsification speed, emulsification time, carrier concentration, surfactant concentration and internal agent concentration. These parameters strongly influence the percentage removal of phenol and emulsion leakage. Under optimum membrane properties, the percentage removal of phenol was as high as 98.33%, with emulsion leakage of 1.25%. It was also found that the necessity of carrier for enhancing phenol removal was strongly dependent on the internal agent concentration.
    Matched MeSH terms: Emulsions*
  20. Teh SS, Lau HLN, Mah SH
    J Oleo Sci, 2019 Aug 01;68(8):803-808.
    PMID: 31292345 DOI: 10.5650/jos.ess19098
    Refined palm-pressed mesocarp fibre oil (PPFO), which can be obtained from one of the by-products of palm oil milling, palm-pressed mesocarp fibre, is categorized as palm sludge oil. So far, it has been given less attention and underutilized until some recent scientific reports revealing its high content of phytonutrients, carotenoids and vitamin E, which have been proven scientifically to possess anti-oxidant activity. The study evaluated the stability of PPFO as a carrier for plant-based emulsion. PPFO was extracted and examined for its positional distribution of fatty acids, saturation levels and iodine value (IV) using NMR spectroscopy. The PPFO-based emulsion was then prepared and subjected to stability tests, including temperature variation, centrifuge test, cycle test, pH and slip melting point for 28 days. Phase separation was observed from PPFO-based emulsion stored at 40℃ from day-21 onwards while no creaming found in all the palm olein-based emulsions stored at the three storage temperatures. Nevertheless, results indicated that the PPFO-based emulsion passed all the tests above showing insignificant phase separation (p > 0.05) compared with those of palm olein commonly used in emulsion preparation. The findings suggested that PPFO enriched with valuable phytonutrients could be used as an alternative carrier oil in emulsion formulation, which is an important component in personal care products.
    Matched MeSH terms: Emulsions/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links