Displaying publications 1 - 20 of 187 in total

Abstract:
Sort:
  1. Wee WY, Dutta A, Choo SW
    PLoS One, 2017;12(3):e0172831.
    PMID: 28291784 DOI: 10.1371/journal.pone.0172831
    Mycobacteria a genus of Actinobacteria are widespread in nature ranging from soil-dwelling saprophytes to human and animal pathogens. The rate of growth has been a classifying factor for the Mycobacterium spp., dividing them into the rapid growers and the slow growers. Here we have performed a comparative genome study of mycobacterial species in order to get better understanding of their evolution, particularly to understand the distinction between the rapid and slow growers. Our study shows that the slow growers had generally gained and lost more genes compared to the rapid growers. The slow growers might haved eventually lost genes (LivFGMH operon, shaACDEFG genes and MspA porin) that could contribute to the slow growth rate of the slow growers. The genes gained and lost in mycobacteria had eventually helped these bacteria to adapt to different environments and have led to the evolution of the present day rapid and slow growers. Our results also show high number of Mycobacterium abscessus specific genes (811 genes) and some of them are associated with the known bacterial quorum sensing genes that might be important for Mycobacterium abscessus to adapt and survive in variety of unfavorable environments. Mycobacterium abscessus also does not contains genes involved in the bacterial defense system and together with the quorum sensing genes may have contributed to the high gene gain rate of Mycobacterium abscessus.
    Matched MeSH terms: Evolution, Molecular*
  2. Tan HM, Low WY
    PLoS One, 2018;13(12):e0209336.
    PMID: 30586459 DOI: 10.1371/journal.pone.0209336
    Glutathione S-Transferases (GSTs) are phase II detoxification enzymes that may have evolved in response to changes of environmental substrates. GST genes formed a multigene family and in mammals, there are six classes known as Alpha, Mu, Omega, Pi, Theta, and Zeta. Recent studies in phase I detoxification system specifically the cytochrome P450s provided a general explanation on why genes from a common origin such as those in a multigene family have both phylogenetically stable and unstable genes. Genes that participate in core functions of organisms such as development and physiology are stable whereas genes that play a role in detoxification are unstable and evolve in a process known as birth-death evolution, which is characterised by frequent gene gains and losses. The generality of the birth-death model at explaining the evolution of detoxification enzymes beyond the phase I enzyme has not been comprehensively explored. This work utilized 383 Gst genes and 300 pseudogenes across 22 mammalian species to study gene gains and losses. GSTs vary greatly in their phylogenetic stability despite their overall sequence similarity. Stable Gst genes from Omega and Zeta classes do not show fluctuation in gene numbers from human to opossum. These genes play a role in biosynthesis related functions. Unstable genes that include Alpha, Mu, Pi and Theta undergo frequent gene gain and loss in a process known as birth-death evolution. Gene members of these four classes are well known for their roles in detoxification. Our positive selection screen identified five positively selected sites in mouse GSTA3. Previous studies showed two of these sites (108H and 208E) were biochemically tested as important residues that conferred catalytic activity against the toxic aflatoxin B1-8,9-epoxide. The functional significance against aflatoxin of the remaining three positively selected sites warrant further investigation.
    Matched MeSH terms: Evolution, Molecular*
  3. Cros E, Chattopadhyay B, Garg KM, Ng NSR, Tomassi S, Benedick S, et al.
    Mol Ecol, 2020 07;29(14):2692-2706.
    PMID: 32542783 DOI: 10.1111/mec.15509
    Quaternary climate oscillations are a well-known driver of animal diversification, but their effects are most well studied in areas where glaciations lead to habitat fragmentation. In large areas of the planet, however, glaciations have had the opposite effect, but here their impacts are much less well understood. This is especially true in Southeast Asia, where cyclical changes in land distribution have generated enormous land expansions during glacial periods. In this study, we selected a panel of five songbird species complexes covering a range of ecological specificities to investigate the effects Quaternary land bridges have had on the connectivity of Southeast Asian forest biota. Specifically, we combined morphological and bioacoustic analysis with an arsenal of population genomic and modelling approaches applied to thousands of genome-wide DNA markers across a total of more than 100 individuals. Our analyses show that species dependent on forest understorey exhibit deep differentiation between Borneo and western Sundaland, with no evidence of gene flow during the land bridges accompanying the last 1-2 ice ages. In contrast, dispersive canopy species and habitat generalists have experienced more recent gene flow. Our results argue that there remains much cryptic species-level diversity to be discovered in Southeast Asia even in well-known animal groups such as birds, especially in nondispersive forest understorey inhabitants. We also demonstrate that Quaternary land bridges have not been equally suitable conduits of gene flow for all species complexes and that life history is a major factor in predicting relative population divergence time across Quaternary climate fluctuations.
    Matched MeSH terms: Evolution, Molecular*
  4. Avin FA, Bhassu S, Tan YS, Shahbazi P, Vikineswary S
    ScientificWorldJournal, 2014;2014:793414.
    PMID: 24587752 DOI: 10.1155/2014/793414
    Identification of edible mushrooms particularly Pleurotus genus has been restricted due to various obstacles. The present study attempted to use the combination of two variable regions of IGS1 and ITS for classifying the economically cultivated Pleurotus species. Integration of the two regions proved a high ability that not only could clearly distinguish the species but also served sufficient intraspecies variation. Phylogenetic tree (IGS1+ITS) showed seven distinct clades, each clade belonging to a separate species group. Moreover, the species differentiation was tested by AMOVA and the results were reconfirmed by presenting appropriate amounts of divergence (91.82% among and 8.18% within the species). In spite of achieving a proper classification of species by combination of IGS1 and ITS sequences, the phylogenetic tree showed the misclassification of the species of P. nebrodensis and P. eryngii var. ferulae with other strains of P. eryngii. However, the constructed median joining (MJ) network could not only differentiate between these species but also offer a profound perception of the species' evolutionary process. Eventually, due to the sufficient variation among and within species, distinct sequences, simple amplification, and location between ideal conserved ribosomal genes, the integration of IGS1 and ITS sequences is recommended as a desirable DNA barcode.
    Matched MeSH terms: Evolution, Molecular*
  5. Zimisuhara B, Valdiani A, Shaharuddin NA, Qamaruzzaman F, Maziah M
    Int J Mol Sci, 2015 Jun 24;16(7):14369-94.
    PMID: 26114389 DOI: 10.3390/ijms160714369
    Genetic structure and biodiversity of the medicinal plant Ficus deltoidea have rarely been scrutinized. To fill these lacunae, five varieties, consisting of 30 F. deltoidea accessions were collected across the country and studied on the basis of molecular and morphological data. Molecular analysis of the accessions was performed using nine Inter Simple Sequence Repeat (ISSR) markers, seven of which were detected as polymorphic markers. ISSR-based clustering generated four clusters supporting the geographical distribution of the accessions to some extent. The Jaccard's similarity coefficient implied the existence of low diversity (0.50-0.75) in the studied population. STRUCTURE analysis showed a low differentiation among the sampling sites, while a moderate varietal differentiation was unveiled with two main populations of F. deltoidea. Our observations confirmed the occurrence of gene flow among the accessions; however, the highest degree of this genetic interference was related to the three accessions of FDDJ10, FDTT16 and FDKT25. These three accessions may be the genetic intervarietal fusion points of the plant's population. Principal Components Analysis (PCA) relying on quantitative morphological characteristics resulted in two principal components with Eigenvalue >1 which made up 89.96% of the total variation. The cluster analysis performed by the eight quantitative characteristics led to grouping the accessions into four clusters with a Euclidean distance ranged between 0.06 and 1.10. Similarly, a four-cluster dendrogram was generated using qualitative traits. The qualitative characteristics were found to be more discriminating in the cluster and PCA analyses, while ISSRs were more informative on the evolution and genetic structure of the population.
    Matched MeSH terms: Evolution, Molecular*
  6. McMinn PC
    FEMS Microbiol. Rev., 2002 Mar;26(1):91-107.
    PMID: 12007645
    Since its discovery in 1969, enterovirus 71 (EV71) has been recognised as a frequent cause of epidemics of hand-foot-and-mouth disease (HFMD) associated with severe neurological sequelae in a small proportion of cases. There has been a significant increase in EV71 epidemic activity throughout the Asia-Pacific region since 1997. Recent HFMD epidemics in this region have been associated with a severe form of brainstem encephalitis associated with pulmonary oedema and high case-fatality rates. The emergence of large-scale epidemic activity in the Asia-Pacific region has been associated with the circulation of three genetic lineages that appear to be undergoing rapid evolutionary change. Two of these lineages (B3 and B4) have not been described previously and appear to have arisen from an endemic focus in equatorial Asia, which has served as a source of virus for HFMD epidemics in Malaysia, Singapore and Australia. The third lineage (C2) has previously been identified [Brown, B.A. et al. (1999) J. Virol. 73, 9969-9975] and was primarily responsible for the large HFMD epidemic in Taiwan during 1998. As EV71 appears not to be susceptible to newly developed antiviral agents and a vaccine is not currently available, control of EV71 epidemics through high-level surveillance and public health intervention needs to be maintained and extended throughout the Asia-Pacific region. Future research should focus on (1) understanding the molecular genetics of EV71 virulence, (2) identification of the receptor(s) for EV71, (3) development of antiviral agents to ameliorate the severity of neurological disease and (4) vaccine development to control epidemics. Following the successful experience of the poliomyelitis control programme, it may be possible to control EV71 epidemics if an effective live-attenuated vaccine is developed.
    Matched MeSH terms: Evolution, Molecular*
  7. Prost S, Armstrong EE, Nylander J, Thomas GWC, Suh A, Petersen B, et al.
    Gigascience, 2019 05 01;8(5).
    PMID: 30689847 DOI: 10.1093/gigascience/giz003
    The diverse array of phenotypes and courtship displays exhibited by birds-of-paradise have long fascinated scientists and nonscientists alike. Remarkably, almost nothing is known about the genomics of this iconic radiation. There are 41 species in 16 genera currently recognized within the birds-of-paradise family (Paradisaeidae), most of which are endemic to the island of New Guinea. In this study, we sequenced genomes of representatives from all five major clades within this family to characterize genomic changes that may have played a role in the evolution of the group's extensive phenotypic diversity. We found genes important for coloration, morphology, and feather and eye development to be under positive selection. In birds-of-paradise with complex lekking systems and strong sexual dimorphism, the core birds-of-paradise, we found Gene Ontology categories for "startle response" and "olfactory receptor activity" to be enriched among the gene families expanding significantly faster compared to the other birds in our study. Furthermore, we found novel families of retrovirus-like retrotransposons active in all three de novo genomes since the early diversification of the birds-of-paradise group, which might have played a role in the evolution of this fascinating group of birds.
    Matched MeSH terms: Evolution, Molecular*
  8. Redwan RM, Saidin A, Kumar SV
    BMC Plant Biol, 2015;15:196.
    PMID: 26264372 DOI: 10.1186/s12870-015-0587-1
    Pineapple (Ananas comosus var. comosus) is known as the king of fruits for its crown and is the third most important tropical fruit after banana and citrus. The plant, which is indigenous to South America, is the most important species in the Bromeliaceae family and is largely traded for fresh fruit consumption. Here, we report the complete chloroplast sequence of the MD-2 pineapple that was sequenced using the PacBio sequencing technology.
    Matched MeSH terms: Evolution, Molecular*
  9. Liu J, Chen X, Liu Y, Lin J, Shen J, Zhang H, et al.
    Infect Dis Poverty, 2021 Aug 21;10(1):112.
    PMID: 34419160 DOI: 10.1186/s40249-021-00895-4
    BACKGROUND: The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is pandemic. However, the origins and global transmission pattern of SARS-CoV-2 remain largely unknown. We aimed to characterize the origination and transmission of SARS-CoV-2 based on evolutionary dynamics.

    METHODS: Using the full-length sequences of SARS-CoV-2 with intact geographic, demographic, and temporal information worldwide from the GISAID database during 26 December 2019 and 30 November 2020, we constructed the transmission tree to depict the evolutionary process by the R package "outbreaker". The affinity of the mutated receptor-binding region of the spike protein to angiotensin-converting enzyme 2 (ACE2) was predicted using mCSM-PPI2 software. Viral infectivity and antigenicity were tested in ACE2-transfected HEK293T cells by pseudovirus transfection and neutralizing antibody test.

    RESULTS: From 26 December 2019 to 8 March 2020, early stage of the COVID-19 pandemic, SARS-CoV-2 strains identified worldwide were mainly composed of three clusters: the Europe-based cluster including two USA-based sub-clusters; the Asia-based cluster including isolates in China, Japan, the USA, Singapore, Australia, Malaysia, and Italy; and the USA-based cluster. The SARS-CoV-2 strains identified in the USA formed four independent clades while those identified in China formed one clade. After 8 March 2020, the clusters of SARS-CoV-2 strains tended to be independent and became "pure" in each of the major countries. Twenty-two of 60 mutations in the receptor-binding domain of the spike protein were predicted to increase the binding affinity of SARS-CoV-2 to ACE2. Of all predicted mutants, the number of E484K was the largest one with 86 585 sequences, followed by S477N with 55 442 sequences worldwide. In more than ten countries, the frequencies of the isolates with E484K and S477N increased significantly. V367F and N354D mutations increased the infectivity of SARS-CoV-2 pseudoviruses (P 

    Matched MeSH terms: Evolution, Molecular*
  10. Ong JS, Liu YW, Liong MT, Choi SB, Tsai YC, Low WY
    Genomics, 2020 11;112(6):3915-3924.
    PMID: 32629096 DOI: 10.1016/j.ygeno.2020.06.052
    The role of microbiota in gut-brain communication has led to the development of probiotics promoting brain health. Here we report a genomic study of a Lactobacillus fermentum PS150 and its patented bioactive protein, elongation factor Tu (EF-Tu), which is associated with cognitive improvement in rats. The L. fermentum PS150 circular chromosome is 2,238,401 bp and it consists of 2281 genes. Chromosome comparisons with other L. fermentum strains highlighted a cluster of glycosyltransferases as potential candidate probiotic factors besides EF-Tu. Molecular evolutionary analyses on EF-Tu genes (tuf) in 235 bacteria species revealed one to three copies of the gene per genome. Seven tuf pseudogenes were found and three species only possessed pseudogenes, which is an unprecedented finding. Protein variability analysis of EF-Tu showed five highly variable residues (40 K, 41G, 42 L, 44 K, and 46E) on the protein surface, which warrant further investigation regarding their potential roles as binding sites.
    Matched MeSH terms: Evolution, Molecular*
  11. Low CF, Bunawan H
    Data Brief, 2016 Sep;8:1454-61.
    PMID: 27617282 DOI: 10.1016/j.dib.2016.08.025
    In this article, nine complete genomes of viruses from the genus Alphanodavirus and Betanodavirus (Family Nodaviridae) were comparatively analyzed and the data of their evolutionary origins and relatedness are reported. The nucleotide sequence alignment of the complete genomes from all species and their deduced evolutionary relationships are presented. High sequence similarity within the genus Betanodavirus compared to the genus Alphanodavirus was revealed in multiple sequence alignment of the Nodaviridae genomes. The amino acid sequence similarity for both RNA1 and RNA2 ORF is more conserved in Betanodavirus, compared to Alphanodavirus. The conserved and variable regions within the virus genome that were defined based on the multiple sequence alignments are presented in this dataset.
    Matched MeSH terms: Evolution, Molecular
  12. Gibbs S, Hundt PJ, Nelson A, Egan JP, Tongnunui P, Simons AM
    Zootaxa, 2018 Jan 03;4369(2):270-280.
    PMID: 29689891 DOI: 10.11646/zootaxa.4369.2.7
    The combtooth blenny (Blenniidae) genus Omobranchus contains small, cryptobenthic fishes common to nearshore habitats throughout the Indo-West Pacific. Recent molecular systematic studies have resolved Omobranchus as monophyletic but little research has been done to resolve species-level relationships. Herein, phylogenetic analyses of one mitochondrial (CO1) and four nuclear (ENC1, myh6, sreb2, and tbr1) genes provide evidence for the monophyly of Omobranchus and support for the elongatus and banditus species group. Sampling of multiple individuals from widespread species (O. ferox, O. punctatus, and O. elongatus) suggested that the Thai-Malay Peninsula is a phylogeographic break that may be a historic barrier to gene flow. Additionally, common meristics and other morphological characters are used to describe an early life history stage of O. ferox and O. punctatus.
    Matched MeSH terms: Evolution, Molecular
  13. Chen CW, Rothfels CJ, Mustapeng AMA, Gubilil M, Karger DN, Kessler M, et al.
    J Plant Res, 2018 Jan;131(1):67-76.
    PMID: 28741041 DOI: 10.1007/s10265-017-0966-9
    The phylogenetic affinities of the fern genus Aenigmopteris have been the subject of considerable disagreement, but until now, no molecular data were available from the genus. Based on the analysis of three chloroplast DNA regions (rbcL, rps16-matK, and trnL-F) we demonstrate that Aenigmopteris dubia (the type species of the genus) and A. elegans are closely related and deeply imbedded in Tectaria. The other three species of genus are morphologically very similar; we therefore transfer all five known species into Tectaria. Detailed morphological comparison further shows that previously proposed diagnostic characters of Aenigmopteris fall within the range of variation of a broadly circumscribed Tectaria.
    Matched MeSH terms: Evolution, Molecular
  14. Chung KF, Leong WC, Rubite RR, Repin R, Kiew R, Liu Y, et al.
    Bot Stud, 2014 Dec;55(1):1.
    PMID: 28510906 DOI: 10.1186/1999-3110-55-1
    BACKGROUND: The picturesque limestone karsts across the Sino-Vietnamese border are renowned biodiversity hotspot, distinguished for extremely high endemism of calciphilous plants restricted to caves and cave-like microhabitats that have functioned as biological refugia on the otherwise harsh habitats. To understand evolutionary mechanisms underlying the splendid limestone flora, dated phylogeny is reconstructed for Asian Begonia, a species-rich genus on limestone substrates represented by no less than 60 species in southern China, using DNA sequences of nrITS and chloroplast rpL16 intron. The sampling includes 94 Begonia species encompassing most major Asian clades with a special emphasized on Chinese species.

    RESULTS: Except for two tuberous deciduous species and a species with upright stems, a majority of Sino-Vietnamese limestone Begonia (SVLB), including sect. Coelocentrum (19 species sampled) and five species of sect. Diploclinium, Leprosae, and Petermannia, are rhizomatous and grouped in a strongly supported and yet internally poorly resolved clade (Clade SVLB), suggesting a single evolutionary origin of the adaptation to limestone substrates by rhizomatous species, subsequent species radiation, and a strong tendency to retain their ancestral niche. Divergence-time estimates indicate a late Miocene diversification of Clade SVLB, coinciding with the onset of the East Asian monsoon and the period of extensive karstification in the area.

    CONCLUSIONS: Based on our phylogenetic study, Begonia sect. Coelocentrum is recircumscribed and expanded to include other members of the Clade SVLB (sect. Diploclinium: B. cavaleriei, B. pulvinifera, and B. wangii; sect. Leprosae: B. cylindrica and B. leprosa; sect. Petermannia: B. sinofloribunda). Because species of Clade SVLB have strong niche conservatism to retain in their ancestral habitats in cave-like microhabitats and Begonia are generally poor dispersers prone to diversify allopatrically, we propose that extensive and continuous karstification of the Sino-Vietnamese limestone region facilitated by the onset of East Asian monsoon since the late Miocene has been the major driving force for species accumulation via geographic isolation in Clade SVLB. Morphologically species of Clade SVLB differ mainly in vegetative traits without apparent adaptive value, suggesting that limestone Begonia radiation is better characterized as non-adaptive, an underappreciated speciation mode crucial for rapid species accumulations in organisms of low vagility and strong niche conservatism.

    Matched MeSH terms: Evolution, Molecular
  15. Musa H, Kasim FH, Gunny AAN, Gopinath SCB, Chinni SV, Ahmad MA
    Int J Biol Macromol, 2019 Jul 15;133:1288-1298.
    PMID: 31055112 DOI: 10.1016/j.ijbiomac.2019.05.003
    A report on the de novo Whole Genome Sequence (WGS) of Marinobacter litoralis SW-45, a moderately salt-tolerant bacterium isolated from the seawater in Malaysia is presented. The strain has a genome size of 3.45 Mb and is capable of producing halophilic lipase, protease and esterase enzymes. Computational prediction of non-coding RNA (ncRNA) genes in M. litoralis SW-45 was performed using standalone software known as the non-coding RNA characterization (nocoRNAc). In addition, a phylogenetic tree showing the evolutionary relationship between the strain and other members of the genus Marinobacter was constructed using 16SrRNA sequence information. A total of 385 ncRNA transcripts, 1124 terminator region, and 2350 Stress Induced Duplex Destabilization sites were predicted. The current WGS shotgun project has provided the relevant genetic information that may be useful for the strain's improvement studies. This manuscript gives the first description of M. litoralis with a complete genome.
    Matched MeSH terms: Evolution, Molecular
  16. Sherpa S, Guéguen M, Renaud J, Blum MGB, Gaude T, Laporte F, et al.
    Ecol Evol, 2019 Nov;9(22):12658-12675.
    PMID: 31788205 DOI: 10.1002/ece3.5734
    Invasive species can encounter environments different from their source populations, which may trigger rapid adaptive changes after introduction (niche shift hypothesis). To test this hypothesis, we investigated whether postintroduction evolution is correlated with contrasting environmental conditions between the European invasive and source ranges in the Asian tiger mosquito Aedes albopictus. The comparison of environmental niches occupied in European and source population ranges revealed more than 96% overlap between invasive and source niches, supporting niche conservatism. However, we found evidence for postintroduction genetic evolution by reanalyzing a published ddRADseq genomic dataset from 90 European invasive populations using genotype-environment association (GEA) methods and generalized dissimilarity modeling (GDM). Three loci, among which a putative heat-shock protein, exhibited significant allelic turnover along the gradient of winter precipitation that could be associated with ongoing range expansion. Wing morphometric traits weakly correlated with environmental gradients within Europe, but wing size differed between invasive and source populations located in different climatic areas. Niche similarities between source and invasive ranges might have facilitated the establishment of populations. Nonetheless, we found evidence for environmental-induced adaptive changes after introduction. The ability to rapidly evolve observed in invasive populations (genetic shift) together with a large proportion of unfilled potential suitable areas (80%) pave the way to further spread of Ae. albopictus in Europe.
    Matched MeSH terms: Evolution, Molecular
  17. Tan MP, Wong LL, Razali SA, Afiqah-Aleng N, Mohd Nor SA, Sung YY, et al.
    Evol Bioinform Online, 2019;15:1176934319892284.
    PMID: 31839703 DOI: 10.1177/1176934319892284
    Aquatic ecosystems that form major biodiversity hotspots are critically threatened due to environmental and anthropogenic stressors. We believe that, in this genomic era, computational methods can be applied to promote aquatic biodiversity conservation by addressing questions related to the evolutionary history of aquatic organisms at the molecular level. However, huge amounts of genomics data generated can only be discerned through the use of bioinformatics. Here, we examine the applications of next-generation sequencing technologies and bioinformatics tools to study the molecular evolution of aquatic animals and discuss the current challenges and future perspectives of using bioinformatics toward aquatic animal conservation efforts.
    Matched MeSH terms: Evolution, Molecular
  18. Shen Y, Wang L, Fu J, Xu X, Yue GH, Li J
    BMC Genomics, 2019 Jun 07;20(1):467.
    PMID: 31174480 DOI: 10.1186/s12864-019-5872-1
    BACKGROUND: Genetic diversity within a species reflects population evolution, ecology, and ability to adapt. Genome-wide population surveys of both natural and introduced populations provide insights into genetic diversity, the evolutionary processes and the genetic basis underlying local adaptation. Grass carp is the most important freshwater foodfish species for food and water weed control. However, there is as yet no overall picture on genetic variations and population structure of this species, which is important for its aquaculture.

    RESULTS: We used 43,310 SNPs to infer the population structure, evidence of local adaptation and sources of introduction. The overall genetic differentiation of this species was low. The native populations were differentiated into three genetic clusters, corresponding to the Yangtze, Pearl and Heilongjiang River Systems, respectively. The populations in Malaysia, India and Nepal were introduced from both the Yangtze and Pearl River Systems. Loci and genes involved in putative local selection for native locations were identified. Evidence of both positive and balancing selection was found in the introduced locations. Genes associated with loci under putative selection were involved in many biological functions. Outlier loci were grouped into clusters as genomic islands within some specific genomic regions, which likely agrees with the divergence hitchhiking scenario of divergence-with-gene-flow.

    CONCLUSIONS: This study, for the first time, sheds novel insights on the population differentiation of the grass carp, genetics of its strong ability in adaption to diverse environments and sources of some introduced grass carp populations. Our data also suggests that the natural populations of the grass carp have been affected by the aquaculture besides neutral and adaptive forces.

    Matched MeSH terms: Evolution, Molecular
  19. Sudo MPS, Yesudasan R, Neik TX, Masilamany D, Jayaraj J, Teo SS, et al.
    Plant Sci, 2021 Sep;310:110985.
    PMID: 34315600 DOI: 10.1016/j.plantsci.2021.110985
    Weedy rice (Oryza spp.) is a major nuisance to rice farmers from all over the world. Although the emergence of weedy rice in East Malaysia on the island of Borneo is very recent, the threat to rice yield has reached an alarming stage. Using 47,027 genotyping-by-sequencing (GBS)-derived SNPs and candidate gene analysis of the plant architecture domestication gene TAC1, we assessed the genetic variations and evolutionary origin of weedy rice in East Malaysia. Our findings revealed two major evolutionary paths for genetically distinct weedy rice types. Whilst the cultivar-like weedy rice are very likely to be the weedy descendant of local coexisting cultivars, the wild-like weedy rice appeared to have arisen through two possible routes: (i) accidental introduction from Peninsular Malaysia weedy rice populations, and (ii) weedy descendants of coexisting cultivars. The outcome of our genetic analyses supports the notion that Sabah cultivars and Peninsular Malaysia weedy rice are the potential progenitors of Sabah weedy rice. Similar TAC1 haplotypes were shared between Malaysian cultivated and weedy rice populations, which further supported the findings of our GBS-SNP analyses. These different strains of weedy rice have convergently evolved shared traits, such as seeds shattering and open tillers. A comparison with our previous simple-sequence repeat-based population genetic analyses highlights the strength of genome-wide SNPs, including detection of admixtures and low-level introgression events. These findings could inform better strategic management for controlling the spread of weedy rice in the region.
    Matched MeSH terms: Evolution, Molecular
  20. Lam SD, Babu MM, Lees J, Orengo CA
    PLoS Comput Biol, 2021 03;17(3):e1008708.
    PMID: 33651795 DOI: 10.1371/journal.pcbi.1008708
    Alternative splicing can expand the diversity of proteomes. Homologous mutually exclusive exons (MXEs) originate from the same ancestral exon and result in polypeptides with similar structural properties but altered sequence. Why would some genes switch homologous exons and what are their biological impact? Here, we analyse the extent of sequence, structural and functional variability in MXEs and report the first large scale, structure-based analysis of the biological impact of MXE events from different genomes. MXE-specific residues tend to map to single domains, are highly enriched in surface exposed residues and cluster at or near protein functional sites. Thus, MXE events are likely to maintain the protein fold, but alter specificity and selectivity of protein function. This comprehensive resource of MXE events and their annotations is available at: http://gene3d.biochem.ucl.ac.uk/mxemod/. These findings highlight how small, but significant changes at critical positions on a protein surface are exploited in evolution to alter function.
    Matched MeSH terms: Evolution, Molecular
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links