Displaying publications 1 - 20 of 300 in total

Abstract:
Sort:
  1. Ahmed HM, Omar NS, Luddin N, Saini R, Saini D
    J Conserv Dent, 2011 Oct;14(4):406-8.
    PMID: 22144813 DOI: 10.4103/0972-0707.87212
    This study aims to evaluate the cytotoxicity of a new fast set highly viscous conventional glass ionomer cement (GIC) with L929 fibroblasts.
    Matched MeSH terms: Fibroblasts
  2. Prime SS, Cirillo N, Hassona Y, Lambert DW, Paterson IC, Mellone M, et al.
    J Oral Pathol Med, 2017 Feb;46(2):82-88.
    PMID: 27237745 DOI: 10.1111/jop.12456
    There is now compelling evidence that the tumour stroma plays an important role in the pathogenesis of cancers of epithelial origin. The pre-eminent cell type of the stroma is carcinoma-associated fibroblasts. These cells demonstrate remarkable heterogeneity with activation and senescence being common stress responses. In this review, we summarise the part that these cells play in cancer, particularly oral cancer, and present evidence to show that activation and senescence reflect a unified programme of fibroblast differentiation. We report advances concerning the senescent fibroblast metabolome, mechanisms of gene regulation in these cells and ways in which epithelial cell adhesion is dysregulated by the fibroblast secretome. We suggest that the identification of fibroblast stress responses may be a valuable diagnostic tool in the determination of tumour behaviour and patient outcome. Further, the fact that stromal fibroblasts are a genetically stable diploid cell population suggests that they may be ideal therapeutic targets and early work in this context is encouraging.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/metabolism; Fibroblasts/physiology*
  3. Al-Jadi AM, Kanyan Enchang F, Mohd Yusoff K
    Turk J Med Sci, 2014;44(5):733-40.
    PMID: 25539538
    BACKGROUND/AIM: To examine, for the first time, the effect of a selected Malaysian honey and its major components on the proliferation of cultured fibroblasts.

    MATERIALS AND METHODS: Honey and some of its components, which include the sugars, the proteins, the hydrogen peroxide produced, and the phenolics, were exposed to cultured fibroblasts. The MTT colorimetric assay was used to assess cell viability and proliferation.

    RESULTS: The stimulatory effect of honey on fibroblast proliferation was observed to be time- and dose-dependent. The continuous production of hydrogen peroxide by the honey-glucose oxidase system also acts to stimulate cell proliferation in a time- and dose-dependent manner. The presence of phenolics with antioxidant properties, on the other hand, renders protection to the cells against the toxic effect of hydrogen peroxide. However, the presence of a growth factor-like substance in honey could not be ascertained.

    CONCLUSION: For the first time, honey and its major components were shown to exert stimulatory effects on cultured fibroblasts. Honey is therefore potentially useful in medicinal practices.

    Matched MeSH terms: Fibroblasts*
  4. Seet WT, Manira M, Maarof M, Khairul Anuar K, Chua KH, Ahmad Irfan AW, et al.
    PLoS One, 2012;7(8):e40978.
    PMID: 22927903 DOI: 10.1371/journal.pone.0040978
    Skin plays an important role in defense against infection and other harmful biological agents. Due to its fragile structure, skin can be easily damaged by heat, chemicals, traumatic injuries and diseases. An autologous bilayered human skin equivalent, MyDerm™, was engineered to provide a living skin substitute to treat critical skin loss. However, one of the disadvantages of living skin substitute is its short shelf-life, hence limiting its distribution worldwide. The aim of this study was to evaluate the shelf-life of MyDerm™ through assessment of cell morphology, cell viability, population doubling time and functional gene expression levels before transplantation. Skin samples were digested with 0.6% Collagenase Type I followed by epithelial cells dissociation with TrypLE Select. Dermal fibroblasts and keratinocytes were culture-expanded to obtain sufficient cells for MyDerm™ construction. MyDerm™ was constructed with plasma-fibrin as temporary biomaterial and evaluated at 0, 24, 48 and 72 hours after storage at 4°C for its shelf-life determination. The morphology of skin cells derived from MyDerm™ remained unchanged across storage times. Cells harvested from MyDerm™ after storage appeared in good viability (90.5%±2.7% to 94.9%±1.6%) and had short population doubling time (58.4±8.7 to 76.9±19 hours). The modest drop in cell viability and increased in population doubling time at longer storage duration did not demonstrate a significant difference. Gene expression for CK10, CK14 and COL III were also comparable between different storage times. In conclusion, MyDerm™ can be stored in basal medium at 4°C for at least 72 hours before transplantation without compromising its functionality.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects; Fibroblasts/metabolism
  5. Siew EL, Rajab NF, Osman AB, Sudesh K, Inayat-Hussain SH
    J Biomed Mater Res A, 2007 May;81(2):317-25.
    PMID: 17120221
    Among the various biomaterials available for tissue engineering and therapeutic applications, microbial polyhydroxyalkanoates offer the most diverse range of thermal and mechanical properties. In this study, the biocompatibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB); containing 50 mol % of 4-hydroxybutyrate] copolymer produced by Delftia acidovorans was evaluated. The cytotoxicity, mode of cell death, and genotoxicity of P(3HB-co-4HB) extract against V79 and L929 fibroblast cells were assessed using MTT assay, acridine orange/propidium iodide staining, and alkaline comet assay, respectively. Our results demonstrate that P(3HB-co-4HB) treated on both cell lines were comparable with clinically-used Polyglactin 910, where more than 60% of viable cells were observed following 72-h treatment at 200 mg/mL. Further morphological investigation on the mode of cell death showed an increase in apoptotic cells in a time-dependent manner in both cell lines. On the other hand, P(3HB-co-4HB) at 200 mg/mL showed no genotoxic effects as determined by alkaline comet assay following 72-h treatment. In conclusion, our study indicated that P(3HB-co-4HB) compounds showed good biocompatibility in fibroblast cells suggesting that it has potential to be used for future medical applications.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects; Fibroblasts/metabolism
  6. Durani LW, Jaafar F, Tan JK, Tajul Arifin K, Mohd Yusof YA, Wan Ngah WZ, et al.
    Clin Ter, 2016;166(6):e365-73.
    PMID: 26794818 DOI: 10.7417/T.2015.1902
    Tocotrienols have been known for their antioxidant properties besides their roles in cellular signalling, gene expression, immune response and apoptosis. This study aimed to determine the molecular mechanism of tocotrienol-rich fraction (TRF) in preventing cellular senescence of human diploid fibroblasts (HDFs) by targeting the genes in senescence-associated signalling pathways.
    Matched MeSH terms: Fibroblasts
  7. Hossain MZ, Daud S, Nambiar P, Razak FA, Ab-Murat N, Saub R, et al.
    Arch Oral Biol, 2017 Aug;80:51-55.
    PMID: 28371626 DOI: 10.1016/j.archoralbio.2017.03.018
    OBJECTIVE: The aim of this study was to investigate correlations between dental pulp cell count of odontoblasts, subodontoblasts and fibroblasts and age, within different age groups. Formulation of regression equations using the dental pulp cell count for predicting age was attempted.

    DESIGN: Eighty-one extracted teeth were grouped into two age groups (6-25 years, 26-80 years). The teeth were demineralized and histological sections were prepared for cell count. Regression equations were generated from regression analysis of cell count and tested for age estimation.

    RESULTS: The number of dental pulp cells were found to increase until around the third decade of life and following this, the odontoblasts and subodontoblasts cell numbers began to decline while the fibroblasts seemed to remain almost stationary. The Pearson correlation test revealed a significant positive correlation between the cell number for all type of cells and age in the 6-25 years group (r=+0.791 for odontoblasts, r=+0.600 for subodontoblasts and r=+0.680 for fibroblasts). In the 26-80 years age group, a significant negative correlation of the odontoblasts (r=-0.777) and subodontoblasts (r=-0.715) with age was observed but for fibroblasts, the correlation value was negligible (r=-0.165). Regression equations generated using odontoblasts and subodontoblasts cell number were applicable for age estimation. The standard error of estimates (SEEs) were around±5years for 6-25 years and±8years for 26-80 years age groups. The mean values of the estimated and chronological ages were not significantly different.

    CONCLUSIONS: A significant correlation between the cell count of odontoblasts and subodontoblasts with age was demonstrated. Regression equations using odontoblasts and subodontoblasts cell number can be used to predict age with some limitations.

    Matched MeSH terms: Fibroblasts
  8. Mohd Nor NH, Berahim Z, Azlina A, Mokhtar KI, Kannan TP
    Curr Stem Cell Res Ther, 2017;12(8):675-681.
    PMID: 28969579 DOI: 10.2174/1574888X12666170929124621
    BACKGROUND: Fibroblasts are the common cells used in clinical regenerative medicine and dentistry. These cells are known to appear heterogeneous in vivo. Previous studies have only investigated the biological properties of these cell subpopulations in vitro. Despite sharing similarity in their spindle-shaped appearance, previous literatures revealed that they play distinguished functional and biological activities in the body.

    OBJECTIVE: This paper highlights the similarities and differences among these cell subpopulations, particularly between intraoral fibroblasts (human periodontal ligament, gingival and oral mucosa fibroblasts) and dermal fibroblasts based on several factors including their morphology, growth and proliferation rate.

    RESULTS: It could be suggested that each subpopulation of fibroblasts demonstrate different positionspecified gene signatures and responses towards extracellular signals. These dissimilarities are crucial to be taken into consideration to employ specific methodologies in stimulating these cells in vivo.

    CONCLUSION: A comparison of the characteristics of these cell subpopulations is desired for identifying appropriate cellular applications.

    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/metabolism; Fibroblasts/physiology*
  9. Munirah Md Noh S, Hamimah Sheikh Abdul Kadir S, Vasudevan S
    Biomolecules, 2019 06 22;9(6).
    PMID: 31234474 DOI: 10.3390/biom9060243
    The anti-fibrotic properties of ranibizumab have been well documented. As an antagonist to vascular endothelial growth factor (VEGF), ranibizumab works by binding and neutralizing all active VEGF-A, thus limiting progressive cell growth and proliferation. Ranibizumab application in ocular diseases has shown remarkable desired effects; however, to date, its antifibrotic mechanism is not well understood. In this study, we identified metabolic changes in ranibizumab-treated human Tenon's fibroblasts (HTFs). Cultured HTFs were treated for 48 h with 0.5 mg/mL of ranibizumab and 0.5 mg/mL control IgG antibody which serves as a negative control. Samples from each group were injected into Agilent 6520 Q-TOF liquid chromatography/mass spectrometer (LC/MS) system to establish the metabolite expression in both ranibizumab treated cells and control group. Data obtained was analyzed using Agilent Mass Hunter Qualitative Analysis software to identify the most regulated metabolite following ranibizumab treatment. At p-value < 0.01 with the cut off value of two-fold change, 31 identified metabolites were found to be significantly upregulated in ranibizumab-treated group, with six of the mostly upregulated having insignificant role in fibroblast cell cycle and wound healing regulations. Meanwhile, 121 identified metabolites that were downregulated, and seven of the mostly downregulated are significantly involved in cell cycle and proliferation. Our findings suggest that ranibizumab abrogates the tissue scarring and wound healing process by regulating the expression of metabolites associated with fibrotic activity. In particular, we found that vitamin Bs are important in maintaining normal folate cycle, nucleotide synthesis, and homocysteine and spermidine metabolism. This study provides an insight into ranibizumab's mechanism of action in HTFs from the perspective of metabolomics.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects; Fibroblasts/metabolism*
  10. Mat Afandi MA, Maarof M, Chowdhury SR, Bt Hj Idrus R
    Tissue Eng Regen Med, 2020 12;17(6):835-845.
    PMID: 32767029 DOI: 10.1007/s13770-020-00283-3
    BACKGROUND: One of the long-standing problems of myoblasts in vitro expansion is slow cell migration and this causes fibroblast population to exceed myoblasts. In this study, we investigated the synergistic effect of laminin and epidermal growth factor (EGF) on co-cultured myoblasts and fibroblasts for cell attachment, proliferation and migration.

    METHODS: Skeletal human muscle cells were cultured in four different conditions; control, EGF, laminin (Lam) and laminin EGF (Lam + EGF). Using live imaging system, their cellular properties; attachment, migration and growth were exposed to Rho kinase inhibitor, Y-27632, and EGF-receptor (EGF-R) inhibitor, gefitinib were measured.

    RESULTS: Myoblast migration and proliferation was enhanced significantly by synergistic stimulation of laminin and EGF (0.61 ± 0.14 µm/min, 0.008 ± 0.001 h-1) compare to that by EGF alone (0.26 ± 0.13 µm/min, 0.004 ± 0.0009 h-1). However, no changes in proliferation and migration were observed for fibroblasts among the culture conditions. Inhibition of Rho kinase resulted in the increase of the myoblast migration on the laminin-coated surface with EGF condition (0.64 ± 0.18 µm/min). Compared to the untreated conditions, myoblasts cultured on the laminin-coated surface and EGF demonstrated elongated morphology, and average cell length increase significantly. In contrast, inhibition of EGF-R resulted in the decrease of myoblast migration on the laminin coated surface with EGF supplemented condition (0.43 ± 0.05 µm/min) in comparison to the untreated control (0.53 ± 0.05 µm/min).

    CONCLUSION: Laminin and EGF preferentially enhance the proliferation and migration of myoblasts, and Rho kinase and EGF-R play a role in this synergistic effect. These results will be beneficial for the propagation of skeletal muscle cells for clinical applications.

    Matched MeSH terms: Fibroblasts
  11. Makpol S, Durani LW, Chua KH, Mohd Yusof YA, Ngah WZ
    J. Biomed. Biotechnol., 2011;2011:506171.
    PMID: 21541185 DOI: 10.1155/2011/506171
    This study determined the molecular mechanisms of tocotrienol-rich fraction (TRF) in preventing cellular senescence of human diploid fibroblasts (HDFs). Primary culture of HDFs at various passages were incubated with 0.5 mg/mL TRF for 24 h. Telomere shortening with decreased telomerase activity was observed in senescent HDFs while the levels of damaged DNA and number of cells in G(0)/G(1) phase were increased and S phase cells were decreased. Incubation with TRF reversed the morphology of senescent HDFs to resemble that of young cells with decreased activity of SA-β-gal, damaged DNA, and cells in G(0)/G(1) phase while cells in the S phase were increased. Elongated telomere length and restoration of telomerase activity were observed in TRF-treated senescent HDFs. These findings confirmed the ability of tocotrienol-rich fraction in preventing HDFs cellular ageing by restoring telomere length and telomerase activity, reducing damaged DNA, and reversing cell cycle arrest associated with senescence.
    Matched MeSH terms: Fibroblasts/cytology*; Fibroblasts/drug effects; Fibroblasts/enzymology; Fibroblasts/metabolism*
  12. Tan JK, Jaafar F, Makpol S
    BMC Complement Altern Med, 2018 Nov 29;18(1):314.
    PMID: 30497457 DOI: 10.1186/s12906-018-2383-6
    BACKGROUND: Replicative senescence of human diploid fibroblasts (HDFs) has been used as a model to study mechanisms of cellular aging. Gamma-tocotrienol (γT3) is one of the members of vitamin E family which has been shown to increase proliferation of senescent HDFs. However, the modulation of protein expressions by γT3 in senescent HDFs remains to be elucidated. Therefore, this study aimed to determine the differentially expressed proteins (DEPs) in young and senescent HDFs; and in vehicle- and γT3-treated senescent HDFs using label-free quantitative proteomics.

    METHODS: Whole proteins were extracted and digested in-gel with trypsin. Peptides were detected by Orbitrap liquid chromatography mass spectrometry. Mass spectra were identified and quantitated by MaxQuant software. The data were further filtered and analyzed statistically using Perseus software to identify DEPs. Functional annotations of DEPs were performed using Panther Classification System.

    RESULTS: A total of 1217 proteins were identified in young and senescent cells, while 1218 proteins in vehicle- and γT3-treated senescent cells. 11 DEPs were found in young and senescent cells which included downregulation of platelet-derived growth factor (PDGF) receptor beta and upregulation of tubulin beta-2A chain protein expressions in senescent cells. 51 DEPs were identified in vehicle- and γT3-treated senescent cells which included upregulation of 70 kDa heat shock protein, triosephosphate isomerase and malate dehydrogenase protein expressions in γT3-treated senescent cells.

    CONCLUSIONS: PDGF signaling and cytoskeletal structure may be dysregulated in senescent HDFs. The pro-proliferative effect of γT3 on senescent HDFs may be mediated through the stimulation of cellular response to stress and carbohydrate metabolism. The expressions and roles of these proteins in relation to cellular senescence are worth further investigations. Data are available via ProteomeXchange with identifier PXD009933.

    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects*; Fibroblasts/metabolism*; Fibroblasts/chemistry
  13. Busra FM, Chowdhury SR, Saim AB, Idrus RB
    Saudi Med J, 2011 Dec;32(12):1311-2.
    PMID: 22159390
    Matched MeSH terms: Fibroblasts/drug effects
  14. Mel M, Sopyan I, Nor YA
    Med J Malaysia, 2008 Jul;63 Suppl A:18-20.
    PMID: 19024963
    Tricalcium phosphate ceramic microcarrier has been developed and introduced to a new possibility for the culture of anchorage dependent animal cells of DF1. It was observed that the number of attached cells was increased with shorter time for both spinner vessel and stirred tank (ST) bioreactor. For those bioreactors, the total viable cell number that had been obtained is about 1.2 x 10(5) cell/ml.
    Matched MeSH terms: Fibroblasts*
  15. Raouf AA, Samsudin AR, Al-Joudi FS, Shamsuria O
    Med J Malaysia, 2004 May;59 Suppl B:101-2.
    PMID: 15468838
    The human fibroblast MRC-5 cells incubated with PHB granules (TM) added at a final concentration of 4 mg/ml showed a time-course pattern of survival. The percentages of dead cells obtained were at the rate of 3.8% after 7 days, respectively. When the MRC-5 cells grown in different material, using the test concentration of 4 mg/ml PCM, they were found to show a similar time-course increasing pattern of death as that obtained with PHB. However, the death was noted in the cells incubated for 7 days, the death rates obtained was 40.54% respectively.
    Matched MeSH terms: Fibroblasts/drug effects
  16. Jacob A, Parolia A, Pau A, Davamani Amalraj F
    PMID: 26303848 DOI: 10.1186/s12906-015-0814-1
    To evaluate and compare the effects of ethanolic extracts of Malaysian propolis and Brazilian red propolis at different concentrations on the migration and proliferation of fibroblast cells.
    Matched MeSH terms: Fibroblasts/drug effects*
  17. Taiyeb Ali TB, Siar CH
    PMID: 9522721
    Matched MeSH terms: Fibroblasts/pathology
  18. Majid ZA, Siar CH, Ling KC
    Med J Malaysia, 1986 Jun;41(2):179-82.
    PMID: 3821617
    An unusual case of fibrous epulis in a newborn is presented. The clinical appearance, histological features and method of treatment are described. A short review of the literature is also included.
    Matched MeSH terms: Fibroblasts/pathology
  19. Zeimaran E, Pourshahrestani S, Pingguan-Murphy B, Kong D, Naveen SV, Kamarul T, et al.
    Carbohydr Polym, 2017 Nov 01;175:618-627.
    PMID: 28917909 DOI: 10.1016/j.carbpol.2017.08.038
    Blends of poly (1, 8-octanediol citrate) (POC) and chitosan (CS) were prepared through solution casting technique. Films with different component fractions (POC/CS: 100/0, 90/10, 80/20, 70/30, 60/40, and 0/100) were successfully prepared and characterized for their mechanical, thermal, structural and morphological properties as well as biocompatibility. The incorporation of CS to POC significantly increased tensile strength and elastic modulus and presented limited influences on pH variation which is important to the biocompatibility of biomaterial implants. The assessment of surface topography indicated that blending could enhance and control the surface roughness of the pure films. POC/CS blends well-supported human dermal fibroblast cells attachment and proliferation, and thus can be used for a range of tissue engineering applications.
    Matched MeSH terms: Fibroblasts/cytology
  20. Tai L, Teoh HK, Cheong SK
    Malays J Pathol, 2018 Dec;40(3):325-329.
    PMID: 30580364
    INTRODUCTION: Induced pluripotent stem cells (iPSC) that exhibit embryonic stem cell-like properties with unlimited self-renewal and multilineage differentiation properties, are a potential cell source in regenerative medicine and cell-based therapy. Although retroviral and lentiviral transduction methods to generate iPSC are well established, the risk of mutagenesis limits the use of these products for therapeutic applications.

    MATERIALS AND METHODS: In this study, reprogramming of human dermal fibroblasts (NHDF) into iPSC was carried out using non-integrative Sendai virus for transduction. The iPSC clones were characterised based on the morphological changes, gene expression of pluripotency markers, and spontaneous and directed differentiation abilities into cells of different germ layers.

    RESULTS: On day 18-25 post-transduction, colonies with embryonic stem cell-like morphology were obtained. The iPSC generated were free of Sendai genome and transgene after passage 10, as confirmed by RT-PCR. NHDF-derived iPSC expressed multiple pluripotency markers in qRT-PCR and immunofluorescence staining. When cultured in suspension for 8 days, iPSC successfully formed embryoid body-like spheres. NHDF-derived iPSC also demonstrated the ability to undergo directed differentiation into ectoderm and endoderm.

    CONCLUSION: NHDF were successfully reprogrammed into iPSC using non-integrating Sendai virus for transduction.

    Matched MeSH terms: Fibroblasts/cytology*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links